BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 22692603)

  • 21. The effect of scaffold architecture on properties of direct 3D fiber deposition of porous Ti6Al4V for orthopedic implants.
    Li JP; de Wijn JR; van Blitterswijk CA; de Groot K
    J Biomed Mater Res A; 2010 Jan; 92(1):33-42. PubMed ID: 19165798
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computer-designed nano-fibrous scaffolds.
    Smith LA; Ma PX
    Methods Mol Biol; 2012; 868():125-34. PubMed ID: 22692608
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineering craniofacial scaffolds.
    Hollister SJ; Lin CY; Saito E; Lin CY; Schek RD; Taboas JM; Williams JM; Partee B; Flanagan CL; Diggs A; Wilke EN; Van Lenthe GH; Müller R; Wirtz T; Das S; Feinberg SE; Krebsbach PH
    Orthod Craniofac Res; 2005 Aug; 8(3):162-73. PubMed ID: 16022718
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing.
    Melchels FP; Barradas AM; van Blitterswijk CA; de Boer J; Feijen J; Grijpma DW
    Acta Biomater; 2010 Nov; 6(11):4208-17. PubMed ID: 20561602
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Permeability analysis of scaffolds for bone tissue engineering.
    Dias MR; Fernandes PR; Guedes JM; Hollister SJ
    J Biomech; 2012 Apr; 45(6):938-44. PubMed ID: 22365847
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fabrication of channeled scaffolds with ordered array of micro-pores through microsphere leaching and indirect Rapid Prototyping technique.
    Tan JY; Chua CK; Leong KF
    Biomed Microdevices; 2013 Feb; 15(1):83-96. PubMed ID: 22923215
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Low-pressure foaming: a novel method for the fabrication of porous scaffolds for tissue engineering.
    Chung EJ; Sugimoto M; Koh JL; Ameer GA
    Tissue Eng Part C Methods; 2012 Feb; 18(2):113-21. PubMed ID: 21933018
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The influence of dispersant concentration on the pore morphology of hydroxyapatite ceramics for bone tissue engineering.
    Cyster LA; Grant DM; Howdle SM; Rose FR; Irvine DJ; Freeman D; Scotchford CA; Shakesheff KM
    Biomaterials; 2005 Mar; 26(7):697-702. PubMed ID: 15350773
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unit cell-based computer-aided manufacturing system for tissue engineering.
    Kang HW; Park JH; Kang TY; Seol YJ; Cho DW
    Biofabrication; 2012 Mar; 4(1):015005. PubMed ID: 22361671
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Preliminary study on chitosan/HAP bilayered scaffold].
    Zhang H; Wang W; Chu D; Liu Y; Guan J
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Nov; 22(11):1358-63. PubMed ID: 19068607
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Engineering functionally graded tissue engineering scaffolds.
    Leong KF; Chua CK; Sudarmadji N; Yeong WY
    J Mech Behav Biomed Mater; 2008 Apr; 1(2):140-52. PubMed ID: 19627779
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Scaffold pore space modulation through intelligent design of dissolvable microparticles.
    Liebschner MA; Wettergreen M
    Methods Mol Biol; 2012; 868():71-89. PubMed ID: 22692605
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cell adhesion and proliferation evaluation of SFF-based biodegradable scaffolds fabricated using a multi-head deposition system.
    Kim JY; Yoon JJ; Park EK; Kim DS; Kim SY; Cho DW
    Biofabrication; 2009 Mar; 1(1):015002. PubMed ID: 20811097
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A brief review of dispensing-based rapid prototyping techniques in tissue scaffold fabrication: role of modeling on scaffold properties prediction.
    Li MG; Tian XY; Chen XB
    Biofabrication; 2009 Sep; 1(3):032001. PubMed ID: 20811104
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Study on compression behavior of porous magnesium used as bone tissue engineering scaffolds.
    Tan L; Gong M; Zheng F; Zhang B; Yang K
    Biomed Mater; 2009 Feb; 4(1):015016. PubMed ID: 19141874
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Permeability of rapid prototyped artificial bone scaffold structures.
    Lipowiecki M; Ryvolová M; Töttösi Á; Kolmer N; Naher S; Brennan SA; Vázquez M; Brabazon D
    J Biomed Mater Res A; 2014 Nov; 102(11):4127-35. PubMed ID: 24443032
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A dynamical study of the mechanical stimuli and tissue differentiation within a CaP scaffold based on micro-CT finite element models.
    Sandino C; Lacroix D
    Biomech Model Mechanobiol; 2011 Jul; 10(4):565-76. PubMed ID: 20865437
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computer-aided tissue engineering: application to biomimetic modelling and design of tissue scaffolds.
    Sun W; Starly B; Darling A; Gomez C
    Biotechnol Appl Biochem; 2004 Feb; 39(Pt 1):49-58. PubMed ID: 14556653
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Design variables for mechanical properties of bone tissue scaffolds.
    Howk D; Chu TM
    Biomed Sci Instrum; 2006; 42():278-83. PubMed ID: 16817621
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pore characteristics of bone substitute materials assessed by microcomputed tomography.
    Klein M; Goetz H; Pazen S; Al-Nawas B; Wagner W; Duschner H
    Clin Oral Implants Res; 2009 Jan; 20(1):67-74. PubMed ID: 19126109
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.