These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 22692603)

  • 41. Engineered tissue scaffolds with variational porous architecture.
    Khoda AK; Ozbolat IT; Koc B
    J Biomech Eng; 2011 Jan; 133(1):011001. PubMed ID: 21186891
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Design and manufacture of combinatorial calcium phosphate bone scaffolds.
    Hoelzle DJ; Svientek SR; Alleyne AG; Wagoner Johnson AJ
    J Biomech Eng; 2011 Oct; 133(10):101001. PubMed ID: 22070326
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A novel route in bone tissue engineering: magnetic biomimetic scaffolds.
    Bock N; Riminucci A; Dionigi C; Russo A; Tampieri A; Landi E; Goranov VA; Marcacci M; Dediu V
    Acta Biomater; 2010 Mar; 6(3):786-96. PubMed ID: 19788946
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [A study on nano-hydroxyapatite-chitosan scaffold for bone tissue engineering].
    Wang X; Liu L; Zhang Q
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb; 21(2):120-4. PubMed ID: 17357456
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Virtual topological optimisation of scaffolds for rapid prototyping.
    Almeida Hde A; Bártolo PJ
    Med Eng Phys; 2010 Sep; 32(7):775-82. PubMed ID: 20620093
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bone formation on the apatite-coated zirconia porous scaffolds within a rabbit calvarial defect.
    Kim HW; Shin SY; Kim HE; Lee YM; Chung CP; Lee HH; Rhyu IC
    J Biomater Appl; 2008 May; 22(6):485-504. PubMed ID: 17494967
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Integrating novel technologies to fabricate smart scaffolds.
    Moroni L; de Wijn JR; van Blitterswijk CA
    J Biomater Sci Polym Ed; 2008; 19(5):543-72. PubMed ID: 18419938
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Three-dimensional plotted scaffolds with controlled pore size gradients: Effect of scaffold geometry on mechanical performance and cell seeding efficiency.
    Sobral JM; Caridade SG; Sousa RA; Mano JF; Reis RL
    Acta Biomater; 2011 Mar; 7(3):1009-18. PubMed ID: 21056125
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Development of a biodegradable scaffold with interconnected pores by heat fusion and its application to bone tissue engineering.
    Shin M; Abukawa H; Troulis MJ; Vacanti JP
    J Biomed Mater Res A; 2008 Mar; 84(3):702-9. PubMed ID: 17635029
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Computer-aided tissue engineering: benefiting from the control over scaffold micro-architecture.
    Tarawneh AM; Wettergreen M; Liebschner MA
    Methods Mol Biol; 2012; 868():1-25. PubMed ID: 22692601
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fabrication of computationally designed scaffolds by low temperature 3D printing.
    Castilho M; Dias M; Gbureck U; Groll J; Fernandes P; Pires I; Gouveia B; Rodrigues J; Vorndran E
    Biofabrication; 2013 Sep; 5(3):035012. PubMed ID: 23887064
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds.
    Van Bael S; Chai YC; Truscello S; Moesen M; Kerckhofs G; Van Oosterwyck H; Kruth JP; Schrooten J
    Acta Biomater; 2012 Jul; 8(7):2824-34. PubMed ID: 22487930
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of scaffold architecture and pore size on smooth muscle cell growth.
    Lee M; Wu BM; Dunn JC
    J Biomed Mater Res A; 2008 Dec; 87(4):1010-6. PubMed ID: 18257081
    [TBL] [Abstract][Full Text] [Related]  

  • 54. PHBV microspheres--PLGA matrix composite scaffold for bone tissue engineering.
    Huang W; Shi X; Ren L; Du C; Wang Y
    Biomaterials; 2010 May; 31(15):4278-85. PubMed ID: 20199806
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fabrication of porous beta-tricalcium phosphate with microchannel and customized geometry based on gel-casting and rapid prototyping.
    Li X; Bian W; Li D; Lian Q; Jin Z
    Proc Inst Mech Eng H; 2011 Mar; 225(3):315-23. PubMed ID: 21485332
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Design & fabrication of porous core implant with preset channel network for osteonecrosis of the femoral head].
    Bian W; Li D; Lian Q; Zhang W; Zhu L; Wang K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Oct; 28(5):961-7. PubMed ID: 22097264
    [TBL] [Abstract][Full Text] [Related]  

  • 57. CAD based design sensitivity analysis and shape optimization of scaffolds for bio-root regeneration in swine.
    Luo X; Yang B; Sheng L; Chen J; Li H; Xie L; Chen G; Yu M; Guo W; Tian W
    Biomaterials; 2015 Jul; 57():59-72. PubMed ID: 25913251
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Extrusion based rapid prototyping technique: an advanced platform for tissue engineering scaffold fabrication.
    Hoque ME; Chuan YL; Pashby I
    Biopolymers; 2012 Feb; 97(2):83-93. PubMed ID: 21830198
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Porous scaffold design using the distance field and triply periodic minimal surface models.
    Yoo DJ
    Biomaterials; 2011 Nov; 32(31):7741-54. PubMed ID: 21798592
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Scaffolds for tissue engineering and 3D cell culture.
    Carletti E; Motta A; Migliaresi C
    Methods Mol Biol; 2011; 695():17-39. PubMed ID: 21042963
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.