These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 22692604)

  • 1. Rapid prototyping composite and complex scaffolds with PAM2.
    Vozzi G; Tirella A; Ahluwalia A
    Methods Mol Biol; 2012; 868():57-69. PubMed ID: 22692604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scaffold pore space modulation through intelligent design of dissolvable microparticles.
    Liebschner MA; Wettergreen M
    Methods Mol Biol; 2012; 868():71-89. PubMed ID: 22692605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microstereolithography-based computer-aided manufacturing for tissue engineering.
    Cho DW; Kang HW
    Methods Mol Biol; 2012; 868():341-56. PubMed ID: 22692621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and vascular analysis of tissue engineering scaffolds, Part 1: Numerical fluid analysis.
    Almeida HA; Bártolo PJ
    Methods Mol Biol; 2012; 868():183-207. PubMed ID: 22692612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional microfabrication by two-photon polymerization technique.
    Ovsianikov A; Chichkov BN
    Methods Mol Biol; 2012; 868():311-25. PubMed ID: 22692619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scaffolds for tissue engineering and 3D cell culture.
    Carletti E; Motta A; Migliaresi C
    Methods Mol Biol; 2011; 695():17-39. PubMed ID: 21042963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and vascular analysis of tissue engineering scaffolds, Part 2: Topology optimisation.
    Almeida HA; Bártolo PJ
    Methods Mol Biol; 2012; 868():209-36. PubMed ID: 22692613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laser sintering for the fabrication of tissue engineering scaffolds.
    Lohfeld S; McHugh PE
    Methods Mol Biol; 2012; 868():303-10. PubMed ID: 22692618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Virtual topological optimisation of scaffolds for rapid prototyping.
    Almeida Hde A; Bártolo PJ
    Med Eng Phys; 2010 Sep; 32(7):775-82. PubMed ID: 20620093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional plotting is a versatile rapid prototyping method for the customized manufacturing of complex scaffolds and tissue engineering constructs.
    Luo Y; Akkineni AR; Gelinsky M
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):279-85. PubMed ID: 24844004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intelligent freeform manufacturing of complex organs.
    Wang X
    Artif Organs; 2012 Nov; 36(11):951-61. PubMed ID: 22888830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems.
    Hutmacher DW; Sittinger M; Risbud MV
    Trends Biotechnol; 2004 Jul; 22(7):354-62. PubMed ID: 15245908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microstructure design of biodegradable scaffold and its effect on tissue regeneration.
    Chen Y; Zhou S; Li Q
    Biomaterials; 2011 Aug; 32(22):5003-14. PubMed ID: 21529933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioactive composite materials for tissue engineering scaffolds.
    Boccaccini AR; Blaker JJ
    Expert Rev Med Devices; 2005 May; 2(3):303-17. PubMed ID: 16288594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The development of computer-aided system for tissue scaffolds (CASTS) system for functionally graded tissue-engineering scaffolds.
    Sudarmadji N; Chua CK; Leong KF
    Methods Mol Biol; 2012; 868():111-23. PubMed ID: 22692607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Preparation and properties of calcium polyphosphate-based composite scaffold for bone tissue engineering].
    Zhang D; Wang J; Zhan T; Zhang X; Yu X; Wan C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Oct; 27(5):1047-50. PubMed ID: 21089668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacterial and Candida albicans adhesion on rapid prototyping-produced 3D-scaffolds manufactured as bone replacement materials.
    Al-Ahmad A; Wiedmann-Al-Ahmad M; Carvalho C; Lang M; Follo M; Braun G; Wittmer A; Mülhaupt R; Hellwig E
    J Biomed Mater Res A; 2008 Dec; 87(4):933-43. PubMed ID: 18228269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomaterial scaffolds in pediatric tissue engineering.
    Patel M; Fisher JP
    Pediatr Res; 2008 May; 63(5):497-501. PubMed ID: 18427294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional plotter technology for fabricating polymeric scaffolds with micro-grooved surfaces.
    Son J; Kim G
    J Biomater Sci Polym Ed; 2009; 20(14):2089-101. PubMed ID: 19874679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D nano/microfabrication techniques and nanobiomaterials for neural tissue regeneration.
    Zhu W; O'Brien C; O'Brien JR; Zhang LG
    Nanomedicine (Lond); 2014 May; 9(6):859-75. PubMed ID: 24981651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.