BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 22692611)

  • 1. Numerical modeling in the design and evaluation of scaffolds for orthopaedics applications.
    Swieszkowski W; Kurzydlowski KJ
    Methods Mol Biol; 2012; 868():155-82. PubMed ID: 22692611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel bone scaffold design approach based on shape function and all-hexahedral mesh refinement.
    Cai S; Xi J; Chua CK
    Methods Mol Biol; 2012; 868():45-55. PubMed ID: 22692603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computer-aided tissue engineering: application to biomimetic modelling and design of tissue scaffolds.
    Sun W; Starly B; Darling A; Gomez C
    Biotechnol Appl Biochem; 2004 Feb; 39(Pt 1):49-58. PubMed ID: 14556653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of permeability of regular scaffolds for skeletal tissue engineering: a combined computational and experimental study.
    Truscello S; Kerckhofs G; Van Bael S; Pyka G; Schrooten J; Van Oosterwyck H
    Acta Biomater; 2012 Apr; 8(4):1648-58. PubMed ID: 22210520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering.
    Williams JM; Adewunmi A; Schek RM; Flanagan CL; Krebsbach PH; Feinberg SE; Hollister SJ; Das S
    Biomaterials; 2005 Aug; 26(23):4817-27. PubMed ID: 15763261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Virtual topological optimisation of scaffolds for rapid prototyping.
    Almeida Hde A; Bártolo PJ
    Med Eng Phys; 2010 Sep; 32(7):775-82. PubMed ID: 20620093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineered tissue scaffolds with variational porous architecture.
    Khoda AK; Ozbolat IT; Koc B
    J Biomech Eng; 2011 Jan; 133(1):011001. PubMed ID: 21186891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering.
    Xu M; Li Y; Suo H; Yan Y; Liu L; Wang Q; Ge Y; Xu Y
    Biofabrication; 2010 Jun; 2(2):025002. PubMed ID: 20811130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of tissue engineering scaffolds based on hyperbolic surfaces: structural numerical evaluation.
    Almeida HA; Bártolo PJ
    Med Eng Phys; 2014 Aug; 36(8):1033-40. PubMed ID: 24935150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and vascular analysis of tissue engineering scaffolds, Part 2: Topology optimisation.
    Almeida HA; Bártolo PJ
    Methods Mol Biol; 2012; 868():209-36. PubMed ID: 22692613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity.
    Lin CY; Kikuchi N; Hollister SJ
    J Biomech; 2004 May; 37(5):623-36. PubMed ID: 15046991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and vascular analysis of tissue engineering scaffolds, Part 1: Numerical fluid analysis.
    Almeida HA; Bártolo PJ
    Methods Mol Biol; 2012; 868():183-207. PubMed ID: 22692612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computer-aided design and finite-element modelling of biomaterial scaffolds for bone tissue engineering.
    Lacroix D; Planell JA; Prendergast PJ
    Philos Trans A Math Phys Eng Sci; 2009 May; 367(1895):1993-2009. PubMed ID: 19380322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical and experimental evaluation of TPMS Gyroid scaffolds for bone tissue engineering.
    Castro APG; Ruben RB; Gonçalves SB; Pinheiro J; Guedes JM; Fernandes PR
    Comput Methods Biomech Biomed Engin; 2019 May; 22(6):567-573. PubMed ID: 30773050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The development of computer-aided system for tissue scaffolds (CASTS) system for functionally graded tissue-engineering scaffolds.
    Sudarmadji N; Chua CK; Leong KF
    Methods Mol Biol; 2012; 868():111-23. PubMed ID: 22692607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling porous scaffold microstructure by a reaction-diffusion system and its degradation by hydrolysis.
    Garzón-Alvarado DA; Velasco MA; Narváez-Tovar CA
    Comput Biol Med; 2012 Feb; 42(2):147-55. PubMed ID: 22136697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unit cell-based computer-aided manufacturing system for tissue engineering.
    Kang HW; Park JH; Kang TY; Seol YJ; Cho DW
    Biofabrication; 2012 Mar; 4(1):015005. PubMed ID: 22361671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct fabrication as a patient-targeted therapeutic in a clinical environment.
    Hutmacher DW; Woodruff MA; Shakesheff K; Guldberg RE
    Methods Mol Biol; 2012; 868():327-40. PubMed ID: 22692620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of scaffold design for bone tissue engineering: A computational and experimental study.
    Dias MR; Guedes JM; Flanagan CL; Hollister SJ; Fernandes PR
    Med Eng Phys; 2014 Apr; 36(4):448-57. PubMed ID: 24636449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and manufacture of combinatorial calcium phosphate bone scaffolds.
    Hoelzle DJ; Svientek SR; Alleyne AG; Wagoner Johnson AJ
    J Biomech Eng; 2011 Oct; 133(10):101001. PubMed ID: 22070326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.