These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 22692618)

  • 1. Laser sintering for the fabrication of tissue engineering scaffolds.
    Lohfeld S; McHugh PE
    Methods Mol Biol; 2012; 868():303-10. PubMed ID: 22692618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimized fabrication of Ca-P/PHBV nanocomposite scaffolds via selective laser sintering for bone tissue engineering.
    Duan B; Cheung WL; Wang M
    Biofabrication; 2011 Mar; 3(1):015001. PubMed ID: 21245522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved biocomposite development of poly(vinyl alcohol) and hydroxyapatite for tissue engineering scaffold fabrication using selective laser sintering.
    Wiria FE; Chua CK; Leong KF; Quah ZY; Chandrasekaran M; Lee MW
    J Mater Sci Mater Med; 2008 Mar; 19(3):989-96. PubMed ID: 17665112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of 13-93 bioactive glass scaffolds for bone tissue engineering using indirect selective laser sintering.
    Kolan KC; Leu MC; Hilmas GE; Brown RF; Velez M
    Biofabrication; 2011 Jun; 3(2):025004. PubMed ID: 21636879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and properties of nano-hydroxypatite scaffolds for bone tissue engineering with a selective laser sintering system.
    Shuai C; Gao C; Nie Y; Hu H; Zhou Y; Peng S
    Nanotechnology; 2011 Jul; 22(28):285703. PubMed ID: 21642759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of porous polyvinyl alcohol scaffold for bone tissue engineering via selective laser sintering.
    Shuai C; Mao Z; Lu H; Nie Y; Hu H; Peng S
    Biofabrication; 2013 Mar; 5(1):015014. PubMed ID: 23385303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective laser sintering of biocompatible polymers for applications in tissue engineering.
    Tan KH; Chua CK; Leong KF; Cheah CM; Gui WS; Tan WS; Wiria FE
    Biomed Mater Eng; 2005; 15(1-2):113-24. PubMed ID: 15623935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid prototyping composite and complex scaffolds with PAM2.
    Vozzi G; Tirella A; Ahluwalia A
    Methods Mol Biol; 2012; 868():57-69. PubMed ID: 22692604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Poly-epsilon-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering.
    Wiria FE; Leong KF; Chua CK; Liu Y
    Acta Biomater; 2007 Jan; 3(1):1-12. PubMed ID: 17055789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microstereolithography-based computer-aided manufacturing for tissue engineering.
    Cho DW; Kang HW
    Methods Mol Biol; 2012; 868():341-56. PubMed ID: 22692621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering.
    Duan B; Wang M; Zhou WY; Cheung WL; Li ZY; Lu WW
    Acta Biomater; 2010 Dec; 6(12):4495-505. PubMed ID: 20601244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and vascular analysis of tissue engineering scaffolds, Part 1: Numerical fluid analysis.
    Almeida HA; Bártolo PJ
    Methods Mol Biol; 2012; 868():183-207. PubMed ID: 22692612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scaffolds for tissue engineering and 3D cell culture.
    Carletti E; Motta A; Migliaresi C
    Methods Mol Biol; 2011; 695():17-39. PubMed ID: 21042963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Printability of calcium phosphate powders for three-dimensional printing of tissue engineering scaffolds.
    Butscher A; Bohner M; Roth C; Ernstberger A; Heuberger R; Doebelin N; von Rohr PR; Müller R
    Acta Biomater; 2012 Jan; 8(1):373-85. PubMed ID: 21925623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of the mechanical properties and porosity relationships in selective laser-sintered polyhedral for functionally graded scaffolds.
    Sudarmadji N; Tan JY; Leong KF; Chua CK; Loh YT
    Acta Biomater; 2011 Feb; 7(2):530-7. PubMed ID: 20883840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The development of computer-aided system for tissue scaffolds (CASTS) system for functionally graded tissue-engineering scaffolds.
    Sudarmadji N; Chua CK; Leong KF
    Methods Mol Biol; 2012; 868():111-23. PubMed ID: 22692607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering.
    Williams JM; Adewunmi A; Schek RM; Flanagan CL; Krebsbach PH; Feinberg SE; Hollister SJ; Das S
    Biomaterials; 2005 Aug; 26(23):4817-27. PubMed ID: 15763261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of tissue scaffolds using selective laser sintering of polyvinyl alcohol/hydroxyapatite biocomposite for craniofacial and joint defects.
    Chua CK; Leong KF; Tan KH; Wiria FE; Cheah CM
    J Mater Sci Mater Med; 2004 Oct; 15(10):1113-21. PubMed ID: 15516872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser sintering fabrication of three-dimensional tissue engineering scaffolds with a flow channel network.
    Niino T; Hamajima D; Montagne K; Oizumi S; Naruke H; Huang H; Sakai Y; Kinoshita H; Fujii T
    Biofabrication; 2011 Sep; 3(3):034104. PubMed ID: 21725146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and vascular analysis of tissue engineering scaffolds, Part 2: Topology optimisation.
    Almeida HA; Bártolo PJ
    Methods Mol Biol; 2012; 868():209-36. PubMed ID: 22692613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.