These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 2269278)

  • 1. Thermodynamics of information transfer between subunits in oligomeric enzymes and kinetic cooperativity. 1. Thermodynamics of subunit interactions, partition functions and enzyme reaction rate.
    Ricard J; Giudici-Orticoni MT; Buc J
    Eur J Biochem; 1990 Dec; 194(2):463-73. PubMed ID: 2269278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamics of information transfer between subunits in oligomeric enzymes and kinetic cooperativity. 2. Thermodynamics of kinetic cooperativity.
    Giudici-Orticoni MT; Buc J; Ricard J
    Eur J Biochem; 1990 Dec; 194(2):475-81. PubMed ID: 2269279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic efficiency, kinetic co-operativity of oligomeric enzymes and evolution.
    Ricard J; Noat G
    J Theor Biol; 1986 Dec; 123(4):431-51. PubMed ID: 3657187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subunit interactions in enzyme transition states--antagonism between substrate binding and reaction rate.
    Ricard J; Noat G
    J Theor Biol; 1984 Dec; 111(4):737-53. PubMed ID: 6527549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamics of information transfer between subunits in oligomeric enzymes and kinetic cooperativity. 3. Information transfer between the subunits of chloroplast fructose bisphosphatase.
    Giudici-Orticoni MT; Buc J; Bidaud M; Ricard J
    Eur J Biochem; 1990 Dec; 194(2):483-90. PubMed ID: 2176598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subunit coupling and kinetic co-operativity of polymeric enzymes. Amplification, attenuation and inversion effects.
    Ricard J; Noat G
    J Theor Biol; 1985 Dec; 117(4):633-49. PubMed ID: 4094457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical thermodynamics and rapid-equilibrium enzyme kinetics.
    Alberty RA
    J Phys Chem B; 2010 Dec; 114(51):17003-12. PubMed ID: 21090637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An extended Monod-Wyman-Changeaux-model expressed in terms of the Herzfeld-Stanley formalism applied to oxygen and carbonmonoxide binding curves of hemoglobin trout IV.
    Schweitzer-Stenner R; Dreybrodt W
    Biophys J; 1989 Apr; 55(4):691-701. PubMed ID: 2720067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Kinetic model of the action of oligomeric enzymes using phosphofructokinase as an example. II. General formulation of the hierarchical model].
    Cherepanov DA
    Mol Biol (Mosk); 1988; 22(3):822-9. PubMed ID: 2972916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Open-system nonequilibrium steady state: statistical thermodynamics, fluctuations, and chemical oscillations.
    Qian H
    J Phys Chem B; 2006 Aug; 110(31):15063-74. PubMed ID: 16884217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamics of local linkage effects. Contracted partition functions and the analysis of site-specific energetics.
    Di Cera E
    Biophys Chem; 1990 Aug; 37(1-3):147-64. PubMed ID: 2285777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of the theory of enzyme subunit interactions to ATP-hydrolyzing enzymes. The case of Na,K-ATPase.
    Plesner IW
    Biophys J; 1987 Jan; 51(1):69-78. PubMed ID: 3026505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of kinetic parameters when modifiers are bound in enzyme-catalyzed reactions.
    Alberty RA
    J Phys Chem B; 2010 Feb; 114(4):1684-9. PubMed ID: 20055362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of enzyme motions by solution NMR relaxation dispersion.
    Loria JP; Berlow RB; Watt ED
    Acc Chem Res; 2008 Feb; 41(2):214-21. PubMed ID: 18281945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The determination of thermodynamic allosteric parameters of an enzyme undergoing steady-state turnover.
    Reinhart GD
    Arch Biochem Biophys; 1983 Jul; 224(1):389-401. PubMed ID: 6870263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of enzyme inhibitory mechanisms from steady-state kinetics.
    Fange D; Lovmar M; Pavlov MY; Ehrenberg M
    Biochimie; 2011 Sep; 93(9):1623-9. PubMed ID: 21689716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolutionary dynamics of enzymes.
    Demetrius L
    Protein Eng; 1995 Aug; 8(8):791-800. PubMed ID: 8637848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From the Kinetic Theory of Gases to the Kinetics of Rate Processes: On the Verge of the Thermodynamic and Kinetic Limits.
    Carvalho-Silva VH; Coutinho ND; Aquilanti V
    Molecules; 2020 Apr; 25(9):. PubMed ID: 32365840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Partition Function and Configurational Entropy in Non-Equilibrium States: A New Theoretical Model.
    Takada A; Conradt R; Richet P
    Entropy (Basel); 2018 Mar; 20(4):. PubMed ID: 33265309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamic coupling between neighboring binding sites in homo-oligomeric ligand sensing proteins from mass resolved ligand-dependent population distributions.
    Li W; Norris AS; Lichtenthal K; Kelly S; Ihms EC; Gollnick P; Wysocki VH; Foster MP
    Protein Sci; 2022 Oct; 31(10):e4424. PubMed ID: 36173171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.