BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 22692870)

  • 1. Bioimpedance analysis for the characterization of breast cancer cells in suspension.
    Guofeng Qiao ; Wei Wang ; Wei Duan ; Fan Zheng ; Sinclair AJ; Chatwin CR
    IEEE Trans Biomed Eng; 2012 Aug; 59(8):2321-9. PubMed ID: 22692870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of the heterogeneity in breast cancer cell lines using whole-cell impedance spectroscopy.
    Han A; Yang L; Frazier AB
    Clin Cancer Res; 2007 Jan; 13(1):139-43. PubMed ID: 17200348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [In vivo measurements of electrical bio-impedance of breast tumors].
    Mitsuyama N; Morimoto T; Kinouchi Y; Iritani T; Sumi T; Kimura S; Monden Y
    Nihon Geka Gakkai Zasshi; 1988 Feb; 89(2):251-5. PubMed ID: 2834633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis.
    Heileman K; Daoud J; Tabrizian M
    Biosens Bioelectron; 2013 Nov; 49():348-59. PubMed ID: 23796534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interdigitated microelectrode-based microchip for electrical impedance spectroscopic study of oral cancer cells.
    Mamouni J; Yang L
    Biomed Microdevices; 2011 Dec; 13(6):1075-88. PubMed ID: 21833766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioelectrical impedance techniques in medicine. Part I: Bioimpedance measurement. Second section: impedance spectrometry.
    Rigaud B; Morucci JP; Chauveau N
    Crit Rev Biomed Eng; 1996; 24(4-6):257-351. PubMed ID: 9196884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel approach of processing electrical bioimpedance data using differential impedance analysis.
    Sanchez B; Bandarenka AS; Vandersteen G; Schoukens J; Bragos R
    Med Eng Phys; 2013 Sep; 35(9):1349-57. PubMed ID: 23601379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Body composition modeling in the calf using an equivalent circuit model of multi-frequency bioimpedance analysis.
    Zhu F; Leonard EF; Levin NW
    Physiol Meas; 2005 Apr; 26(2):S133-43. PubMed ID: 15798226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of (reversible) myocardial ischemic injury by means of electrical bioimpedance.
    Mellert F; Winkler K; Schneider C; Dudykevych T; Welz A; Osypka M; Gersing E; Preusse CJ
    IEEE Trans Biomed Eng; 2011 Jun; 58(6):1511-8. PubMed ID: 20595084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Some early results related to electrical impedance of normal and abnormal gastric tissue.
    Keshtkar A; Salehnia Z; Somi MH; Eftekharsadat AT
    Phys Med; 2012 Jan; 28(1):19-24. PubMed ID: 21334938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noninvasive measurement of the electrical bioimpedance of breast tumors.
    Ohmine Y; Morimoto T; Kinouchi Y; Iritani T; Takeuchi M; Monden Y
    Anticancer Res; 2000; 20(3B):1941-6. PubMed ID: 10928131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Body fluid volumes measurements by impedance: A review of bioimpedance spectroscopy (BIS) and bioimpedance analysis (BIA) methods.
    Jaffrin MY; Morel H
    Med Eng Phys; 2008 Dec; 30(10):1257-69. PubMed ID: 18676172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-cell resolution diagnosis of cancer cells by carbon nanotube electrical spectroscopy.
    Abdolahad M; Janmaleki M; Taghinejad M; Taghnejad H; Salehi F; Mohajerzadeh S
    Nanoscale; 2013 Apr; 5(8):3421-7. PubMed ID: 23474499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of electrode polarization capacitance in low-frequency impedance spectroscopy by using mesh electrodes.
    Padmaraj D; Miller JH; Wosik J; Zagozdzon-Wosik W
    Biosens Bioelectron; 2011 Nov; 29(1):13-7. PubMed ID: 21872464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robustness study of the different immittance spectra and frequency ranges in bioimpedance spectroscopy analysis for assessment of total body composition.
    Buendia R; Seoane F; Bosaeus I; Gil-Pita R; Johannsson G; Ellegård L; Lindecrantz K
    Physiol Meas; 2014 Jul; 35(7):1373-95. PubMed ID: 24854791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microsystems for isolation and electrophysiological analysis of breast cancer cells from blood.
    Han KH; Han A; Frazier AB
    Biosens Bioelectron; 2006 Apr; 21(10):1907-14. PubMed ID: 16529922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and validation of a multi-electrode bioimpedance system for enhancing spatial resolution of cellular impedance studies.
    Alexander FA; Celestin M; Price DT; Nanjundan M; Bhansali S
    Analyst; 2013 Jul; 138(13):3728-34. PubMed ID: 23689543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impedance spectroscopy assisted by magnetic nanoparticles as a potential biosensor principle for breast cancer cells in suspension.
    Silva JG; Cárdenas RA; Quiróz AR; Sánchez V; Lozano LM; Pérez NM; López J; Villanueva C; González CA
    Physiol Meas; 2014 Jun; 35(6):931-41. PubMed ID: 24846525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel estimation of the electrical bioimpedance using the local polynomial method. Application to in vivo real-time myocardium tissue impedance characterization during the cardiac cycle.
    Sanchez B; Schoukens J; Bragos R; Vandersteen G
    IEEE Trans Biomed Eng; 2011 Dec; 58(12):3376-85. PubMed ID: 21878408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new measuring and identification approach for time-varying bioimpedance using multisine electrical impedance spectroscopy.
    Sanchez B; Louarroudi E; Jorge E; Cinca J; Bragos R; Pintelon R
    Physiol Meas; 2013 Mar; 34(3):339-57. PubMed ID: 23442821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.