These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 22692874)

  • 1. Design of an optical system for interrogation of implanted luminescent sensors and verification with silicone skin phantoms.
    Long R; McShane M
    IEEE Trans Biomed Eng; 2012 Sep; 59(9):2459-65. PubMed ID: 22692874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental validation of an optical system for interrogation of dermally-implanted microparticle sensors.
    Long R; McShane M
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():122-5. PubMed ID: 19964925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical instrument design for interrogation of dermally-implanted luminescent microparticle sensors.
    Long R; McShane M
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5656-9. PubMed ID: 19164000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput spectral system for interrogation of dermally-implanted luminescent sensors.
    Long R; McShane M
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2351-4. PubMed ID: 23366396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-efficiency optical systems for interrogation of dermally-implanted sensors.
    Long R; McShane M
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1033-6. PubMed ID: 21097206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional, multiwavelength Monte Carlo simulations of dermally implantable luminescent sensors.
    Long R; McShane M
    J Biomed Opt; 2010; 15(2):027011. PubMed ID: 20459285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental validation of a spectroscopic Monte Carlo light transport simulation technique and Raman scattering depth sensing analysis in biological tissue.
    Akbarzadeh A; Edjlali E; Sheehy G; Selb J; Agarwal R; Weber J; Leblond F
    J Biomed Opt; 2020 Oct; 25(10):. PubMed ID: 33111509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum.
    Liu Q; Zhu C; Ramanujam N
    J Biomed Opt; 2003 Apr; 8(2):223-36. PubMed ID: 12683848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Containment sensors: manufacture in technical production facilities--technical and economic aspects].
    Finke L
    Biomed Tech (Berl); 1998; 43 Suppl():582-3. PubMed ID: 9859500
    [No Abstract]   [Full Text] [Related]  

  • 10. Hardware acceleration of a Monte Carlo simulation for photodynamic therapy [corrected] treatment planning.
    Lo WC; Redmond K; Luu J; Chow P; Rose J; Lilge L
    J Biomed Opt; 2009; 14(1):014019. PubMed ID: 19256707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling of selective photon capture for collection of fluorescence emitted from dermally-implanted microparticle sensors.
    Long R; McShane MJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2972-5. PubMed ID: 18002619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation.
    Zhu C; Liu Q; Ramanujam N
    J Biomed Opt; 2003 Apr; 8(2):237-47. PubMed ID: 12683849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility of Monte Carlo simulations in quantitative tissue imaging.
    Maeder U; Schmidts T; Avci E; Heverhagen JT; Runkel F; Fiebich M
    Int J Artif Organs; 2010 Apr; 33(4):253-9. PubMed ID: 20458695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of optical probe interrogation field of near-infrared reflectance: phantom and Monte Carlo study.
    Bahadur AN; Giller CA; Kashyap D; Liu H
    Appl Opt; 2007 Aug; 46(23):5552-61. PubMed ID: 17694099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel and Easy Method to Locate and Remove First Approved Long-Term Implantable Glucose Sensors.
    Akturk HK; Brackett S
    Diabetes Technol Ther; 2020 Jul; 22(7):538-540. PubMed ID: 32031415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monte Carlo modeling for implantable fluorescent analyte sensors.
    McShane MJ; Rastegar S; Pishko M; Coté GL
    IEEE Trans Biomed Eng; 2000 May; 47(5):624-32. PubMed ID: 10851806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo method.
    Li H; Tian J; Zhu F; Cong W; Wang LV; Hoffman EA; Wang G
    Acad Radiol; 2004 Sep; 11(9):1029-38. PubMed ID: 15350584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implantable glucose sensors: present status and future developments.
    Kerner W
    Exp Clin Endocrinol Diabetes; 2001; 109 Suppl 2():S341-6. PubMed ID: 11460582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of optical properties of superficial volumes of layered tissue phantoms.
    Tseng SH; Hayakawa CK; Spanier J; Durkin AJ
    IEEE Trans Biomed Eng; 2008 Jan; 55(1):335-9. PubMed ID: 18232377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phantom validation of Monte Carlo modeling for noncontact depth sensitive fluorescence measurements in an epithelial tissue model.
    Ong YH; Zhu C; Liu Q
    J Biomed Opt; 2014 Aug; 19(8):085006. PubMed ID: 25117077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.