These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 22692890)

  • 1. Computational and mathematical models of chondrogenesis in vertebrate limbs.
    Glimm T; Headon D; Kiskowski MA
    Birth Defects Res C Embryo Today; 2012 Jun; 96(2):176-92. PubMed ID: 22692890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bare bones pattern formation: a core regulatory network in varying geometries reproduces major features of vertebrate limb development and evolution.
    Zhu J; Zhang YT; Alber MS; Newman SA
    PLoS One; 2010 May; 5(5):e10892. PubMed ID: 20531940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamical mechanisms for skeletal pattern formation in the vertebrate limb.
    Hentschel HG; Glimm T; Glazier JA; Newman SA
    Proc Biol Sci; 2004 Aug; 271(1549):1713-22. PubMed ID: 15306292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The morphostatic limit for a model of skeletal pattern formation in the vertebrate limb.
    Alber M; Glimm T; Hentschel HG; Kazmierczak B; Zhang YT; Zhu J; Newman SA
    Bull Math Biol; 2008 Feb; 70(2):460-83. PubMed ID: 17965922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mathematical modeling of chondrogenic pattern formation during limb development: Recent advances in continuous models.
    Chatterjee P; Glimm T; Kaźmierczak B
    Math Biosci; 2020 Apr; 322():108319. PubMed ID: 32001201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth and differentiation of the developing limb bud from the perspective of chondrogenesis.
    Shimizu H; Yokoyama S; Asahara H
    Dev Growth Differ; 2007 Aug; 49(6):449-54. PubMed ID: 17661739
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patterns of mesenchymal condensation in a multiscale, discrete stochastic model.
    Christley S; Alber MS; Newman SA
    PLoS Comput Biol; 2007 Apr; 3(4):e76. PubMed ID: 17465675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early steps in limb patterning and chondrogenesis.
    Pizette S; Niswander L
    Novartis Found Symp; 2001; 232():23-36; discussion 36-46. PubMed ID: 11277083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular interactions and signaling in cartilage development.
    DeLise AM; Fischer L; Tuan RS
    Osteoarthritis Cartilage; 2000 Sep; 8(5):309-34. PubMed ID: 10966838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Outgrowth and patterning of the vertebrate limb.
    Schwabe JW; Rodriguez-Esteban C; De La Peña J; Tavares AT; Ng JK; Banayo EM; Foys B; Eshelman B; Magallon J; Tam R; Izpisúa-Belmonte JC
    Cold Spring Harb Symp Quant Biol; 1997; 62():431-5. PubMed ID: 9598378
    [No Abstract]   [Full Text] [Related]  

  • 11. Recent molecular advances in understanding vertebrate limb development.
    Robertson KE; Tickle C
    Br J Plast Surg; 1997 Feb; 50(2):109-15. PubMed ID: 9135427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the morphodynamic galectin patterning network of the developing avian limb skeleton.
    Glimm T; Bhat R; Newman SA
    J Theor Biol; 2014 Apr; 346():86-108. PubMed ID: 24355216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activator-inhibitor dynamics of vertebrate limb pattern formation.
    Newman SA; Bhat R
    Birth Defects Res C Embryo Today; 2007 Dec; 81(4):305-19. PubMed ID: 18228262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origination and innovation in the vertebrate limb skeleton: an epigenetic perspective.
    Newman SA; Müller GB
    J Exp Zool B Mol Dev Evol; 2005 Nov; 304(6):593-609. PubMed ID: 16161064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular basis of vertebrate limb patterning.
    Tickle C
    Am J Med Genet; 2002 Oct; 112(3):250-5. PubMed ID: 12357468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The homeobox transcription factor Barx2 regulates chondrogenesis during limb development.
    Meech R; Edelman DB; Jones FS; Makarenkova HP
    Development; 2005 May; 132(9):2135-46. PubMed ID: 15800003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. L-type voltage-gated Ca
    Atsuta Y; Tomizawa RR; Levin M; Tabin CJ
    Proc Natl Acad Sci U S A; 2019 Oct; 116(43):21592-21601. PubMed ID: 31591237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular control of vertebrate limb development, evolution and congenital malformations.
    Cohn MJ; Bright PE
    Cell Tissue Res; 1999 Apr; 296(1):3-17. PubMed ID: 10199960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional analysis of fibronectin isoforms in chondrogenesis: Full-length recombinant mesenchymal fibronectin reduces spreading and promotes condensation and chondrogenesis of limb mesenchymal cells.
    White DG; Hershey HP; Moss JJ; Daniels H; Tuan RS; Bennett VD
    Differentiation; 2003 Jun; 71(4-5):251-61. PubMed ID: 12823226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frizzled-7 and limb mesenchymal chondrogenesis: effect of misexpression and involvement of N-cadherin.
    Tufan AC; Daumer KM; Tuan RS
    Dev Dyn; 2002 Mar; 223(2):241-53. PubMed ID: 11836788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.