BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 22693027)

  • 1. Systematic functional characterization of putative zinc transport genes and identification of zinc toxicosis phenotypes in Drosophila melanogaster.
    Lye JC; Richards CD; Dechen K; Paterson D; de Jonge MD; Howard DL; Warr CG; Burke R
    J Exp Biol; 2012 Sep; 215(Pt 18):3254-65. PubMed ID: 22693027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo zinc toxicity phenotypes provide a sensitized background that suggests zinc transport activities for most of the Drosophila Zip and ZnT genes.
    Lye JC; Richards CD; Dechen K; Warr CG; Burke R
    J Biol Inorg Chem; 2013 Mar; 18(3):323-32. PubMed ID: 23322169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compartmentalized zinc deficiency and toxicities caused by ZnT and Zip gene over expression result in specific phenotypes in Drosophila.
    Dechen K; Richards CD; Lye JC; Hwang JE; Burke R
    Int J Biochem Cell Biol; 2015 Mar; 60():23-33. PubMed ID: 25562517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Local and systemic effects of targeted zinc redistribution in Drosophila neuronal and gastrointestinal tissues.
    Richards CD; Burke R
    Biometals; 2015 Dec; 28(6):967-74. PubMed ID: 26411574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dietary zinc absorption is mediated by ZnT1 in Drosophila melanogaster.
    Wang X; Wu Y; Zhou B
    FASEB J; 2009 Aug; 23(8):2650-61. PubMed ID: 19325039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional studies of Drosophila zinc transporters reveal the mechanism for zinc excretion in Malpighian tubules.
    Yin S; Qin Q; Zhou B
    BMC Biol; 2017 Feb; 15(1):12. PubMed ID: 28196538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fly's eye view of zinc homeostasis: Novel insights into the genetic control of zinc metabolism from Drosophila.
    Richards CD; Burke R
    Arch Biochem Biophys; 2016 Dec; 611():142-149. PubMed ID: 27453039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drosophila ZnT1 is essential in the intestine for dietary zinc absorption.
    Wang Z; Li X; Zhou B
    Biochem Biophys Res Commun; 2020 Dec; 533(4):1004-1011. PubMed ID: 33012507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular basis of adaptive shift in body size in Drosophila melanogaster: functional and sequence analyses of the Dca gene.
    Lee SF; Chen Y; Varan AK; Wee CW; Rako L; Axford JK; Good RT; Blacket MJ; Reuter C; Partridge L; Hoffmann AA
    Mol Biol Evol; 2011 Aug; 28(8):2393-402. PubMed ID: 21393605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and characterization of a novel Drosophila melanogaster glutathione S-transferase-containing FLYWCH zinc finger protein.
    Dai MS; Sun XX; Qin J; Smolik SM; Lu H
    Gene; 2004 Nov; 342(1):49-56. PubMed ID: 15527965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A role for dZIP89B in Drosophila dietary zinc uptake reveals additional complexity in the zinc absorption process.
    Richards CD; Warr CG; Burke R
    Int J Biochem Cell Biol; 2015 Dec; 69():11-9. PubMed ID: 26545796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simple and efficient method to identify replacements of P-lacZ by P-Gal4 lines allows obtaining Gal4 insertions in the bithorax complex of Drosophila.
    de Navas L; Foronda D; Suzanne M; Sánchez-Herrero E
    Mech Dev; 2006 Nov; 123(11):860-7. PubMed ID: 16971094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic knockdown of a single organic anion transporter alters the expression of functionally related genes in Malpighian tubules of Drosophila melanogaster.
    Chahine S; Campos A; O'Donnell MJ
    J Exp Biol; 2012 Aug; 215(Pt 15):2601-10. PubMed ID: 22786636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mammalian zinc transporters.
    Liuzzi JP; Cousins RJ
    Annu Rev Nutr; 2004; 24():151-72. PubMed ID: 15189117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional test of the influence of Wolbachia genes on cytoplasmic incompatibility expression in Drosophila melanogaster.
    Yamada R; Iturbe-Ormaetxe I; Brownlie JC; O'Neill SL
    Insect Mol Biol; 2011 Feb; 20(1):75-85. PubMed ID: 20854481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The four members of the Drosophila metallothionein family exhibit distinct yet overlapping roles in heavy metal homeostasis and detoxification.
    Egli D; Domènech J; Selvaraj A; Balamurugan K; Hua H; Capdevila M; Georgiev O; Schaffner W; Atrian S
    Genes Cells; 2006 Jun; 11(6):647-58. PubMed ID: 16716195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeted mutagenesis of the Sap47 gene of Drosophila: flies lacking the synapse associated protein of 47 kDa are viable and fertile.
    Funk N; Becker S; Huber S; Brunner M; Buchner E
    BMC Neurosci; 2004 Apr; 5():16. PubMed ID: 15117418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of decapentaplegic expression during regeneration of the Drosophila melanogaster wing imaginal disc.
    Mattila J; Omelyanchuk L; Nokkala S
    Int J Dev Biol; 2004 Jun; 48(4):343-7. PubMed ID: 15300516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drosophila damaged DNA-binding protein 1 is an essential factor for development.
    Takata K; Yoshida H; Yamaguchi M; Sakaguchi K
    Genetics; 2004 Oct; 168(2):855-65. PubMed ID: 15514059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of big bang, a novel gene encoding for PDZ domain-containing proteins that are dynamically expressed throughout Drosophila development.
    Kim SY; Renihan MK; Boulianne GL
    Gene Expr Patterns; 2006 Jun; 6(5):504-18. PubMed ID: 16423565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.