These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 2269308)
1. A highly active and oxidation-resistant subtilisin-like enzyme produced by a combination of site-directed mutagenesis and chemical modification. Grøn H; Bech LM; Branner S; Breddam K Eur J Biochem; 1990 Dec; 194(3):897-901. PubMed ID: 2269308 [TBL] [Abstract][Full Text] [Related]
2. Toward tailoring the specificity of the S1 pocket of subtilisin B. lentus: chemical modification of mutant enzymes as a strategy for removing specificity limitations. DeSantis G; Shang X; Jones JB Biochemistry; 1999 Oct; 38(40):13391-7. PubMed ID: 10529215 [TBL] [Abstract][Full Text] [Related]
3. Engineering a novel specificity in subtilisin BPN'. Rheinnecker M; Baker G; Eder J; Fersht AR Biochemistry; 1993 Feb; 32(5):1199-203. PubMed ID: 8448130 [TBL] [Abstract][Full Text] [Related]
4. A combinatorial approach to chemical modification of subtilisin Bacillus lentus. Plettner E; Khumtaveeporn K; Shang X; Jones JB Bioorg Med Chem Lett; 1998 Sep; 8(17):2291-6. PubMed ID: 9873530 [TBL] [Abstract][Full Text] [Related]
5. Engineering subtilisin YaB: restriction of substrate specificity by the substitution of Gly124 and Gly151 with Ala. Mei HC; Liaw YC; Li YC; Wang DC; Takagi H; Tsai YC Protein Eng; 1998 Feb; 11(2):109-17. PubMed ID: 9605545 [TBL] [Abstract][Full Text] [Related]
6. Site-directed mutagenesis combined with chemical modification as a strategy for altering the specificity of the S1 and S1' pockets of subtilisin Bacillus lentus. DeSantis G; Berglund P; Stabile MR; Gold M; Jones JB Biochemistry; 1998 Apr; 37(17):5968-73. PubMed ID: 9558332 [TBL] [Abstract][Full Text] [Related]
7. Significance of hydrophobic S4-P4 interactions in subtilisin 309 from Bacillus lentus. Bech LM; Sørensen SB; Breddam K Biochemistry; 1993 Mar; 32(11):2845-52. PubMed ID: 8457550 [TBL] [Abstract][Full Text] [Related]
8. Furilisin: a variant of subtilisin BPN' engineered for cleaving tribasic substrates. Ballinger MD; Tom J; Wells JA Biochemistry; 1996 Oct; 35(42):13579-85. PubMed ID: 8885837 [TBL] [Abstract][Full Text] [Related]
9. Subtilisin Sendai from alkalophilic Bacillus sp.: molecular and enzymatic properties of the enzyme and molecular cloning and characterization of the gene, aprS. Yamagata Y; Isshiki K; Ichishima E Enzyme Microb Technol; 1995 Jul; 17(7):653-63. PubMed ID: 7605625 [TBL] [Abstract][Full Text] [Related]
10. Thermal stable and oxidation-resistant variant of subtilisin E. Yang Y; Jiang L; Zhu L; Wu Y; Yang S J Biotechnol; 2000 Aug; 81(2-3):113-8. PubMed ID: 10989170 [TBL] [Abstract][Full Text] [Related]
11. Substrate specificity of natural variants and genetically engineered intermediates of Bacillus lentus alkaline proteases. Maurer KH; Markgraf M; Goddette D Adv Exp Med Biol; 1996; 379():243-56. PubMed ID: 8796329 [TBL] [Abstract][Full Text] [Related]
12. Mutant subtilisin E with enhanced protease activity obtained by site-directed mutagenesis. Takagi H; Morinaga Y; Ikemura H; Inouye M J Biol Chem; 1988 Dec; 263(36):19592-6. PubMed ID: 3143728 [TBL] [Abstract][Full Text] [Related]
13. Engineering an enzyme by site-directed mutagenesis to be resistant to chemical oxidation. Estell DA; Graycar TP; Wells JA J Biol Chem; 1985 Jun; 260(11):6518-21. PubMed ID: 3922976 [TBL] [Abstract][Full Text] [Related]
14. Directed evolution of subtilisin E in Bacillus subtilis to enhance total activity in aqueous dimethylformamide. You L; Arnold FH Protein Eng; 1996 Jan; 9(1):77-83. PubMed ID: 9053906 [TBL] [Abstract][Full Text] [Related]
15. Probing the importance of hydrogen bonds in the active site of the subtilisin nattokinase by site-directed mutagenesis and molecular dynamics simulation. Zheng ZL; Ye MQ; Zuo ZY; Liu ZG; Tai KC; Zou GL Biochem J; 2006 May; 395(3):509-15. PubMed ID: 16411898 [TBL] [Abstract][Full Text] [Related]
16. The effect of amino acid deletion in subtilisin E, based on structural comparison with a microbial alkaline elastase, on its substrate specificity and catalysis. Takagi H; Arafuka S; Inouye M; Yamasaki M J Biochem; 1992 May; 111(5):584-8. PubMed ID: 1639753 [TBL] [Abstract][Full Text] [Related]
17. Enhancement of oxidative stability of the subtilisin nattokinase by site-directed mutagenesis expressed in Escherichia coli. Weng M; Zheng Z; Bao W; Cai Y; Yin Y; Zou G Biochim Biophys Acta; 2009 Nov; 1794(11):1566-72. PubMed ID: 19631297 [TBL] [Abstract][Full Text] [Related]
18. Studies of binding sites in the subtilisin from Bacillus lentus by means of site directed mutagenesis and kinetic investigations. Grøn H; Bech LM; Sørensen SB; Meldal M; Breddam K Adv Exp Med Biol; 1996; 379():105-12. PubMed ID: 8796314 [No Abstract] [Full Text] [Related]
19. Insights on activity and stability of subtilisin E towards guanidinium chloride and sodium dodecylsulfate. Li Z; Roccatano D; Lorenz M; Martinez R; Schwaneberg U J Biotechnol; 2014 Jan; 169():87-94. PubMed ID: 24280236 [TBL] [Abstract][Full Text] [Related]
20. Site-selective glycosylation of subtilisin Bacillus lentus causes dramatic increases in esterase activity. Lloyd RC; Davis BG; Jones JB Bioorg Med Chem; 2000 Jul; 8(7):1537-44. PubMed ID: 10976502 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]