BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 22693264)

  • 1. Subdomain structure of the co-chaperone SGTA and activity of its androgen receptor client.
    Trotta AP; Need EF; Butler LM; Selth LA; O'Loughlin MA; Coetzee GA; Tilley WD; Buchanan G
    J Mol Endocrinol; 2012 Oct; 49(2):57-68. PubMed ID: 22693264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular cloning of canine co-chaperone small glutamine-rich tetratricopeptide repeat-containing protein α (SGTA) and investigation of its ability to suppress androgen receptor signalling in androgen-independent prostate cancer.
    Kato Y; Ochiai K; Michishita M; Azakami D; Nakahira R; Morimatsu M; Ishiguro-Oonuma T; Yoshikawa Y; Kobayashi M; Bonkobara M; Kobayashi M; Takahashi K; Watanabe M; Omi T
    Vet J; 2015 Nov; 206(2):143-8. PubMed ID: 26346258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Knockdown of the cochaperone SGTA results in the suppression of androgen and PI3K/Akt signaling and inhibition of prostate cancer cell proliferation.
    Trotta AP; Need EF; Selth LA; Chopra S; Pinnock CB; Leach DA; Coetzee GA; Butler LM; Tilley WD; Buchanan G
    Int J Cancer; 2013 Dec; 133(12):2812-23. PubMed ID: 23740762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The cochaperone SGTA (small glutamine-rich tetratricopeptide repeat-containing protein alpha) demonstrates regulatory specificity for the androgen, glucocorticoid, and progesterone receptors.
    Paul A; Garcia YA; Zierer B; Patwardhan C; Gutierrez O; Hildenbrand Z; Harris DC; Balsiger HA; Sivils JC; Johnson JL; Buchner J; Chadli A; Cox MB
    J Biol Chem; 2014 May; 289(22):15297-308. PubMed ID: 24753260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of androgen receptor signaling in prostate cancer by the cochaperone small glutamine rich tetratricopeptide repeat containing protein alpha.
    Buchanan G; Ricciardelli C; Harris JM; Prescott J; Yu ZC; Jia L; Butler LM; Marshall VR; Scher HI; Gerald WL; Coetzee GA; Tilley WD
    Cancer Res; 2007 Oct; 67(20):10087-96. PubMed ID: 17942943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Small glutamine-rich tetratricopeptide repeat-containing protein alpha is present in human ovaries but may not be differentially expressed in relation to polycystic ovary syndrome.
    Butler MS; Yang X; Ricciardelli C; Liang X; Norman RJ; Tilley WD; Hickey TE
    Fertil Steril; 2013 Jun; 99(7):2076-83.e1. PubMed ID: 23433514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tumor suppressor REIC/DKK-3 and co-chaperone SGTA: Their interaction and roles in the androgen sensitivity.
    Ochiai K; Morimatsu M; Kato Y; Ishiguro-Oonuma T; Udagawa C; Rungsuriyawiboon O; Azakami D; Michishita M; Ariyoshi Y; Ueki H; Nasu Y; Kumon H; Watanabe M; Omi T
    Oncotarget; 2016 Jan; 7(3):3283-96. PubMed ID: 26658102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An androgen receptor mutation in the MDA-MB-453 cell line model of molecular apocrine breast cancer compromises receptor activity.
    Moore NL; Buchanan G; Harris JM; Selth LA; Bianco-Miotto T; Hanson AR; Birrell SN; Butler LM; Hickey TE; Tilley WD
    Endocr Relat Cancer; 2012 Aug; 19(4):599-613. PubMed ID: 22719059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Canine REIC/Dkk-3 interacts with SGTA and restores androgen receptor signalling in androgen-independent prostate cancer cell lines.
    Kato Y; Ochiai K; Kawakami S; Nakao N; Azakami D; Bonkobara M; Michishita M; Morimatsu M; Watanabe M; Omi T
    BMC Vet Res; 2017 Jun; 13(1):170. PubMed ID: 28599655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impaired helix 12 dynamics due to proline 892 substitutions in the androgen receptor are associated with complete androgen insensitivity.
    Elhaji YA; Stoica I; Dennis S; Purisima EO; Lumbroso R; Beitel LK; Trifiro MA
    Hum Mol Genet; 2006 Mar; 15(6):921-31. PubMed ID: 16449235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Androgen receptor protein levels are significantly reduced in serous ovarian carcinomas compared with benign or borderline disease but are not altered by cancer stage or metastatic progression.
    Butler MS; Ricciardelli C; Tilley WD; Hickey TE
    Horm Cancer; 2013 Jun; 4(3):154-64. PubMed ID: 23443946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GRIP1 mediates the interaction between the amino- and carboxyl-termini of the androgen receptor.
    Shen HC; Buchanan G; Butler LM; Prescott J; Henderson M; Tilley WD; Coetzee GA
    Biol Chem; 2005 Jan; 386(1):69-74. PubMed ID: 15843149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective role of an NH2-terminal WxxLF motif for aberrant androgen receptor activation in androgen depletion independent prostate cancer cells.
    Dehm SM; Regan KM; Schmidt LJ; Tindall DJ
    Cancer Res; 2007 Oct; 67(20):10067-77. PubMed ID: 17942941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An S296R mutation in the human androgen receptor causes activation of the receptor by non-androgenic steroids and stronger inhibition by the nuclear receptor corepressor N-coR.
    Li YD; Lu Y; Chen GC; Lu J
    Clin Exp Pharmacol Physiol; 2008 Oct; 35(10):1252-7. PubMed ID: 18637017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in androgen receptor nongenotropic signaling correlate with transition of LNCaP cells to androgen independence.
    Unni E; Sun S; Nan B; McPhaul MJ; Cheskis B; Mancini MA; Marcelli M
    Cancer Res; 2004 Oct; 64(19):7156-68. PubMed ID: 15466214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and identification of L-dopa decarboxylase as a protein that binds to and enhances transcriptional activity of the androgen receptor using the repressed transactivator yeast two-hybrid system.
    Wafa LA; Cheng H; Rao MA; Nelson CC; Cox M; Hirst M; Sadowski I; Rennie PS
    Biochem J; 2003 Oct; 375(Pt 2):373-83. PubMed ID: 12864730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solution structure of the SGTA dimerisation domain and investigation of its interactions with the ubiquitin-like domains of BAG6 and UBL4A.
    Darby JF; Krysztofinska EM; Simpson PJ; Simon AC; Leznicki P; Sriskandarajah N; Bishop DS; Hale LR; Alfano C; Conte MR; Martínez-Lumbreras S; Thapaliya A; High S; Isaacson RL
    PLoS One; 2014; 9(11):e113281. PubMed ID: 25415308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Androgen receptor activity at the prostate specific antigen locus: steroidal and non-steroidal mechanisms.
    Jia L; Kim J; Shen H; Clark PE; Tilley WD; Coetzee GA
    Mol Cancer Res; 2003 Mar; 1(5):385-92. PubMed ID: 12651911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional in vivo interaction between the amino-terminal, transactivation domain and the ligand binding domain of the androgen receptor.
    Doesburg P; Kuil CW; Berrevoets CA; Steketee K; Faber PW; Mulder E; Brinkmann AO; Trapman J
    Biochemistry; 1997 Feb; 36(5):1052-64. PubMed ID: 9033395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential modulation of androgen receptor transcriptional activity by the nuclear receptor co-repressor (N-CoR).
    Berrevoets CA; Umar A; Trapman J; Brinkmann AO
    Biochem J; 2004 May; 379(Pt 3):731-8. PubMed ID: 14744261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.