BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 2269342)

  • 21. Calcium-dependent opening of a non-specific pore in the mitochondrial inner membrane is inhibited at pH values below 7. Implications for the protective effect of low pH against chemical and hypoxic cell damage.
    Halestrap AP
    Biochem J; 1991 Sep; 278 ( Pt 3)(Pt 3):715-9. PubMed ID: 1654889
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of Ca2+ transport in brain mitochondria. II. The mechanism of the adenine nucleotides enhancement of Ca2+ uptake and retention.
    Rottenberg H; Marbach M
    Biochim Biophys Acta; 1990 Mar; 1016(1):87-98. PubMed ID: 2310744
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adenine nucleotide and phosphate transport systems of mitochondria. Relative location of sulfhydryl groups based on the use of the novel fluorescent probe eosin-5-maleimide.
    Houstĕk J; Pedersen PL
    J Biol Chem; 1985 May; 260(10):6288-95. PubMed ID: 2581951
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nitric oxide and differential effects of ATP on mitochondrial permeability transition.
    Piantadosi CA; Tatro LG; Whorton AR
    Nitric Oxide; 2002 Feb; 6(1):45-60. PubMed ID: 11829534
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phenylarsine oxide stimulates pyridine nucleotide-linked Ca2+ release from rat liver mitochondria.
    Schweizer M; Durrer P; Richter C
    Biochem Pharmacol; 1994 Aug; 48(5):967-73. PubMed ID: 8093109
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [The role of the adenine nucleotide carrier in regulating energy and ion permeability of rat liver mitochondria upon cold exposure].
    Shabalina IG; Kolpakov AR; Solov'ev VN; Panov AV; Panin LE
    Biokhimiia; 1995 Mar; 60(3):432-40. PubMed ID: 7734616
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Low concentrations of cyclosporin A close Ca2+-dependent inner mitochondrial membrane pores in the absence of other effectors].
    Kushnareva IuE; Mikhaĭlova LM; Andreev AIu
    Biokhimiia; 1995 Sep; 60(9):1502-11. PubMed ID: 8562656
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of the effect of cyclosporine, verapamil, and trifluoperazine on calcium-induced membrane permeability of mitochondria.
    Strzelecki T; McGraw BR; Khauli RB
    Transplant Proc; 1989 Feb; 21(1 Pt 1):182-3. PubMed ID: 2705221
    [No Abstract]   [Full Text] [Related]  

  • 29. Gradual changes in permeability of inner mitochondrial membrane precede the mitochondrial permeability transition.
    Balakirev MY; Zimmer G
    Arch Biochem Biophys; 1998 Aug; 356(1):46-54. PubMed ID: 9681990
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prooxidants open both the mitochondrial permeability transition pore and a low-conductance channel in the inner mitochondrial membrane.
    Kushnareva YE; Sokolove PM
    Arch Biochem Biophys; 2000 Apr; 376(2):377-88. PubMed ID: 10775426
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Control of the mitochondrial inner membrane permeability by sulfhydryl groups.
    Lê-Quôc K; Lê-Quôc D
    Arch Biochem Biophys; 1982 Jul; 216(2):639-51. PubMed ID: 7114855
    [No Abstract]   [Full Text] [Related]  

  • 32. [Regulation of the specific and nonspecific ion conductivity of mitochondria by adenine nucleotide carriers].
    Panov AV
    Biokhimiia; 1992 Apr; 57(4):483-94. PubMed ID: 1637915
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modulation of the mitochondrial cyclosporin A-sensitive permeability transition pore by the proton electrochemical gradient. Evidence that the pore can be opened by membrane depolarization.
    Bernardi P
    J Biol Chem; 1992 May; 267(13):8834-9. PubMed ID: 1374381
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of metabolic inhibitors on mitochondrial permeability transition and glutathione status.
    Reed DJ; Savage MK
    Biochim Biophys Acta; 1995 May; 1271(1):43-50. PubMed ID: 7599224
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of Ca2+, peroxides, SH reagents, phosphate and aging on the permeability of mitochondrial membranes.
    Rizzuto R; Pitton G; Azzone GF
    Eur J Biochem; 1987 Jan; 162(2):239-49. PubMed ID: 3803384
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Participation of the ATP/ADP antiporter and fatty acids in oxidative phosphorylation uncoupling in squirrel liver mitochondria during winter hibernation and awakening].
    Brustovetskiĭ NN; Amerkhanov ZG; Egorova MV; Mokhova EN; Skulachev VP
    Biokhimiia; 1991 May; 56(5):947-53. PubMed ID: 1747420
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interaction of adenine nucleotides with the adenine nucleotide translocase regulates the developmental changes in proton conductance of the inner mitochondrial membrane.
    Valcarce C; Cuezva JM
    FEBS Lett; 1991 Dec; 294(3):225-8. PubMed ID: 1661684
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ca(2+) binding to c-state of adenine nucleotide translocase (ANT)-surrounding cardiolipins enhances (ANT)-Cys(56) relative mobility: a computational-based mitochondrial permeability transition study.
    Pestana CR; Silva CH; Pardo-Andreu GL; Rodrigues FP; Santos AC; Uyemura SA; Curti C
    Biochim Biophys Acta; 2009 Mar; 1787(3):176-82. PubMed ID: 19161974
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of Tl
    Korotkov SM
    Biometals; 2021 Oct; 34(5):987-1006. PubMed ID: 34236558
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Distinct characteristics of Ca(2+)-induced depolarization of isolated brain and liver mitochondria.
    Vergun O; Reynolds IJ
    Biochim Biophys Acta; 2005 Sep; 1709(2):127-37. PubMed ID: 16112074
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.