These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
324 related articles for article (PubMed ID: 22693566)
21. Synthesis and photodynamic activity of zinc(II) phthalocyanine derivatives bearing methoxy and trifluoromethylbenzyloxy substituents in homogeneous and biological media. Yslas EI; Rivarola V; Durantini EN Bioorg Med Chem; 2005 Jan; 13(1):39-46. PubMed ID: 15582450 [TBL] [Abstract][Full Text] [Related]
22. An integrin-targeting glutathione-activated zinc(II) phthalocyanine for dual targeted photodynamic therapy. Ha SYY; Wong RCH; Wong CTT; Ng DKP Eur J Med Chem; 2019 Jul; 174():56-65. PubMed ID: 31029944 [TBL] [Abstract][Full Text] [Related]
23. Polymeric micelles encapsulating pH-responsive doxorubicin prodrug and glutathione-activated zinc(II) phthalocyanine for combined chemotherapy and photodynamic therapy. Gao D; Lo PC J Control Release; 2018 Jul; 282():46-61. PubMed ID: 29673646 [TBL] [Abstract][Full Text] [Related]
24. A tumor-targeted activatable phthalocyanine-tetrapeptide-doxorubicin conjugate for synergistic chemo-photodynamic therapy. Ke MR; Chen SF; Peng XH; Zheng QF; Zheng BY; Yeh CK; Huang JD Eur J Med Chem; 2017 Feb; 127():200-209. PubMed ID: 28063352 [TBL] [Abstract][Full Text] [Related]
25. Two combined photosensitizers: a goal for more effective photodynamic therapy of cancer. Acedo P; Stockert JC; Cañete M; Villanueva A Cell Death Dis; 2014 Mar; 5(3):e1122. PubMed ID: 24625981 [TBL] [Abstract][Full Text] [Related]
27. Octa-alkyl zinc phthalocyanines: potential photosensitizers for use in the photodynamic therapy of cancer. Cook MJ; Chambrier I; Cracknell SJ; Mayes DA; Russell DA Photochem Photobiol; 1995 Sep; 62(3):542-5. PubMed ID: 8570709 [TBL] [Abstract][Full Text] [Related]
28. Anticancer Activity Study and Density Functional/Time-Dependent Density Functional Theory (DFT/TD-DFT) Calculations of 2(3),9(10),16(17),23(24)-Tetrakis-(6-Methylpyridin-2-Yloxy)Phthalocyaninato Zn(II). Karagöz ID; Yilmaz Y; Sanusi K J Fluoresc; 2020 Sep; 30(5):1151-1160. PubMed ID: 32648171 [TBL] [Abstract][Full Text] [Related]
29. Asymmetric ZnPc-rhodamine B conjugates for mitochondrial targeted photodynamic therapy. Muli DK; Rajaputra P; You Y; McGrath DV Bioorg Med Chem Lett; 2014 Sep; 24(18):4496-4500. PubMed ID: 25150377 [TBL] [Abstract][Full Text] [Related]
30. Investigation of in vitro PDT activities of zinc phthalocyanine immobilised TiO Yurt F; Ince M; Colak SG; Ocakoglu K; Er O; Soylu HM; Gunduz C; Avci CB; Kurt CC Int J Pharm; 2017 May; 524(1-2):467-474. PubMed ID: 28365390 [TBL] [Abstract][Full Text] [Related]
31. Apomyoglobin is an efficient carrier for zinc phthalocyanine in photodynamic therapy of tumors. Cozzolino M; Pesce L; Pezzuoli D; Montali C; Brancaleon L; Cavanna L; Abbruzzetti S; Diaspro A; Bianchini P; Viappiani C Biophys Chem; 2019 Oct; 253():106228. PubMed ID: 31349136 [TBL] [Abstract][Full Text] [Related]
32. A phthalocyanine-peptide conjugate with high in vitro photodynamic activity and enhanced in vivo tumor-retention property. Ke MR; Yeung SL; Fong WP; Ng DK; Lo PC Chemistry; 2012 Apr; 18(14):4225-33. PubMed ID: 22378352 [TBL] [Abstract][Full Text] [Related]
33. Ferric Ion Driven Assembly of Catalase-like Supramolecular Photosensitizing Nanozymes for Combating Hypoxic Tumors. Li Y; Sun P; Zhao L; Yan X; Ng DKP; Lo PC Angew Chem Int Ed Engl; 2020 Dec; 59(51):23228-23238. PubMed ID: 32881223 [TBL] [Abstract][Full Text] [Related]
34. Development of targeted photodynamic therapy drugs by combining a zinc phthalocyanine sensitizer with TSPO or EGFR binding groups: the impact of the number of targeting agents on biological activity. Toubia I; Nguyen C; Diring S; Onofre M; Daurat M; Gauthier C; Gary-Bobo M; Kobeissi M; Odobel F Org Biomol Chem; 2023 Aug; 21(32):6509-6523. PubMed ID: 37341568 [TBL] [Abstract][Full Text] [Related]
35. A pH-sensitive micelle composed of heparin, phospholipids, and histidine as the carrier of photosensitizers: Application to enhance photodynamic therapy of cancer. Debele TA; Mekuria SL; Tsai HC Int J Biol Macromol; 2017 May; 98():125-138. PubMed ID: 28137464 [TBL] [Abstract][Full Text] [Related]
36. A 2-pyridone modified zinc phthalocyanine with three-in-one multiple functions for photodynamic therapy. Li Y; Wang C; Zhou L; Wei S Chem Commun (Camb); 2021 Mar; 57(25):3127-3130. PubMed ID: 33630986 [TBL] [Abstract][Full Text] [Related]
37. Amphiphilic zinc phthalocyanine photosensitizers: synthesis, photophysicochemical properties and in vitro studies for photodynamic therapy. Çakır D; Göksel M; Çakır V; Durmuş M; Biyiklioglu Z; Kantekin H Dalton Trans; 2015 May; 44(20):9646-58. PubMed ID: 25923925 [TBL] [Abstract][Full Text] [Related]
38. Multiple Functions Integrated inside a Single Molecule for Amplification of Photodynamic Therapy Activity. Shi X; Zhan Q; Li Y; Zhou L; Wei S Mol Pharm; 2020 Jan; 17(1):190-201. PubMed ID: 31804837 [TBL] [Abstract][Full Text] [Related]
39. Vehiculization determines the endocytic internalization mechanism of Zn(II)-phthalocyanine. Soriano J; Villanueva A; Stockert JC; Cañete M Histochem Cell Biol; 2013 Jan; 139(1):149-60. PubMed ID: 22899479 [TBL] [Abstract][Full Text] [Related]
40. A novel α-(8-quinolinyloxy) monosubstituted zinc phthalocyanine nanosuspension for potential enhanced photodynamic therapy. Fang X; Xie A; Song H; Jiang D; Li H; Wang Z; Tan X; Zhang Y; Wang A; Zheng W Drug Dev Ind Pharm; 2020 Nov; 46(11):1881-1888. PubMed ID: 32951478 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]