BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 22693587)

  • 1. Specific recognition of p53 tetramers by peptides derived from p53 interacting proteins.
    Gabizon R; Brandt T; Sukenik S; Lahav N; Lebendiker M; Shalev DE; Veprintsev D; Friedler A
    PLoS One; 2012; 7(5):e38060. PubMed ID: 22693587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using peptides to study the interaction between the p53 tetramerization domain and HIV-1 Tat.
    Gabizon R; Mor M; Rosenberg MM; Britan L; Hayouka Z; Kotler M; Shalev DE; Friedler A
    Biopolymers; 2008; 90(2):105-16. PubMed ID: 18189286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cancer-associated p53 tetramerization domain mutants: quantitative analysis reveals a low threshold for tumor suppressor inactivation.
    Kamada R; Nomura T; Anderson CW; Sakaguchi K
    J Biol Chem; 2011 Jan; 286(1):252-8. PubMed ID: 20978130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular basis of S100 proteins interacting with the p53 homologs p63 and p73.
    van Dieck J; Brandt T; Teufel DP; Veprintsev DB; Joerger AC; Fersht AR
    Oncogene; 2010 Apr; 29(14):2024-35. PubMed ID: 20140014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of the oligomerization state of p53 by differential binding of proteins of the S100 family to p53 monomers and tetramers.
    van Dieck J; Fernandez-Fernandez MR; Veprintsev DB; Fersht AR
    J Biol Chem; 2009 May; 284(20):13804-13811. PubMed ID: 19297317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidation of methionine residue at hydrophobic core destabilizes p53 tetrameric structure.
    Nomura T; Kamada R; Ito I; Chuman Y; Shimohigashi Y; Sakaguchi K
    Biopolymers; 2009 Jan; 91(1):78-84. PubMed ID: 18781628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and functionality of a designed p53 dimer.
    Davison TS; Nie X; Ma W; Lin Y; Kay C; Benchimol S; Arrowsmith CH
    J Mol Biol; 2001 Mar; 307(2):605-17. PubMed ID: 11254385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 14-3-3 activation of DNA binding of p53 by enhancing its association into tetramers.
    Rajagopalan S; Jaulent AM; Wells M; Veprintsev DB; Fersht AR
    Nucleic Acids Res; 2008 Oct; 36(18):5983-91. PubMed ID: 18812399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of BRCT domains of BRCA1 and 53BP1: a biophysical analysis.
    Ekblad CM; Friedler A; Veprintsev D; Weinberg RL; Itzhaki LS
    Protein Sci; 2004 Mar; 13(3):617-25. PubMed ID: 14978302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specific sequences from the carboxyl terminus of human p53 gene product form anti-parallel tetramers in solution.
    Sakamoto H; Lewis MS; Kodama H; Appella E; Sakaguchi K
    Proc Natl Acad Sci U S A; 1994 Sep; 91(19):8974-8. PubMed ID: 8090755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorylation Regulates the Bound Structure of an Intrinsically Disordered Protein: The p53-TAZ2 Case.
    Ithuralde RE; Turjanski AG
    PLoS One; 2016; 11(1):e0144284. PubMed ID: 26742101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and thermodynamic characterization of the recognition of the S100-binding peptides TRTK12 and p53 by calmodulin.
    Wafer LN; Tzul FO; Pandharipande PP; McCallum SA; Makhatadze GI
    Protein Sci; 2014 Sep; 23(9):1247-61. PubMed ID: 24947426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping the interactions of the p53 transactivation domain with the KIX domain of CBP.
    Lee CW; Arai M; Martinez-Yamout MA; Dyson HJ; Wright PE
    Biochemistry; 2009 Mar; 48(10):2115-24. PubMed ID: 19220000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorylation of the C-terminal sites of human p53 reduces non-sequence-specific DNA binding as modeled with synthetic peptides.
    Hoffmann R; Craik DJ; Pierens G; Bolger RE; Otvos L
    Biochemistry; 1998 Sep; 37(39):13755-64. PubMed ID: 9753464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding of Rad51 and other peptide sequences to a promiscuous, highly electrostatic binding site in p53.
    Friedler A; Veprintsev DB; Rutherford T; von Glos KI; Fersht AR
    J Biol Chem; 2005 Mar; 280(9):8051-9. PubMed ID: 15611070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Folding of tetrameric p53: oligomerization and tumorigenic mutations induce misfolding and loss of function.
    Lubin DJ; Butler JS; Loh SN
    J Mol Biol; 2010 Jan; 395(4):705-16. PubMed ID: 19913028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tracing the evolution of the p53 tetramerization domain.
    Joerger AC; Wilcken R; Andreeva A
    Structure; 2014 Sep; 22(9):1301-1310. PubMed ID: 25185827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultraslow oligomerization equilibria of p53 and its implications.
    Natan E; Hirschberg D; Morgner N; Robinson CV; Fersht AR
    Proc Natl Acad Sci U S A; 2009 Aug; 106(34):14327-32. PubMed ID: 19667193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dimerization of the core domain of the p53 family: a computational study.
    Madhumalar A; Jun LH; Lane DP; Verma CS
    Cell Cycle; 2009 Jan; 8(1):137-48. PubMed ID: 19106606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The p53 tetramer shows an induced-fit interaction of the C-terminal domain with the DNA-binding domain.
    D'Abramo M; Bešker N; Desideri A; Levine AJ; Melino G; Chillemi G
    Oncogene; 2016 Jun; 35(25):3272-81. PubMed ID: 26477317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.