These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 22693587)
1. Specific recognition of p53 tetramers by peptides derived from p53 interacting proteins. Gabizon R; Brandt T; Sukenik S; Lahav N; Lebendiker M; Shalev DE; Veprintsev D; Friedler A PLoS One; 2012; 7(5):e38060. PubMed ID: 22693587 [TBL] [Abstract][Full Text] [Related]
2. Using peptides to study the interaction between the p53 tetramerization domain and HIV-1 Tat. Gabizon R; Mor M; Rosenberg MM; Britan L; Hayouka Z; Kotler M; Shalev DE; Friedler A Biopolymers; 2008; 90(2):105-16. PubMed ID: 18189286 [TBL] [Abstract][Full Text] [Related]
3. Cancer-associated p53 tetramerization domain mutants: quantitative analysis reveals a low threshold for tumor suppressor inactivation. Kamada R; Nomura T; Anderson CW; Sakaguchi K J Biol Chem; 2011 Jan; 286(1):252-8. PubMed ID: 20978130 [TBL] [Abstract][Full Text] [Related]
4. Molecular basis of S100 proteins interacting with the p53 homologs p63 and p73. van Dieck J; Brandt T; Teufel DP; Veprintsev DB; Joerger AC; Fersht AR Oncogene; 2010 Apr; 29(14):2024-35. PubMed ID: 20140014 [TBL] [Abstract][Full Text] [Related]
5. Modulation of the oligomerization state of p53 by differential binding of proteins of the S100 family to p53 monomers and tetramers. van Dieck J; Fernandez-Fernandez MR; Veprintsev DB; Fersht AR J Biol Chem; 2009 May; 284(20):13804-13811. PubMed ID: 19297317 [TBL] [Abstract][Full Text] [Related]
6. Oxidation of methionine residue at hydrophobic core destabilizes p53 tetrameric structure. Nomura T; Kamada R; Ito I; Chuman Y; Shimohigashi Y; Sakaguchi K Biopolymers; 2009 Jan; 91(1):78-84. PubMed ID: 18781628 [TBL] [Abstract][Full Text] [Related]
7. Structure and functionality of a designed p53 dimer. Davison TS; Nie X; Ma W; Lin Y; Kay C; Benchimol S; Arrowsmith CH J Mol Biol; 2001 Mar; 307(2):605-17. PubMed ID: 11254385 [TBL] [Abstract][Full Text] [Related]
8. 14-3-3 activation of DNA binding of p53 by enhancing its association into tetramers. Rajagopalan S; Jaulent AM; Wells M; Veprintsev DB; Fersht AR Nucleic Acids Res; 2008 Oct; 36(18):5983-91. PubMed ID: 18812399 [TBL] [Abstract][Full Text] [Related]
9. Comparison of BRCT domains of BRCA1 and 53BP1: a biophysical analysis. Ekblad CM; Friedler A; Veprintsev D; Weinberg RL; Itzhaki LS Protein Sci; 2004 Mar; 13(3):617-25. PubMed ID: 14978302 [TBL] [Abstract][Full Text] [Related]
10. Specific sequences from the carboxyl terminus of human p53 gene product form anti-parallel tetramers in solution. Sakamoto H; Lewis MS; Kodama H; Appella E; Sakaguchi K Proc Natl Acad Sci U S A; 1994 Sep; 91(19):8974-8. PubMed ID: 8090755 [TBL] [Abstract][Full Text] [Related]
11. Phosphorylation Regulates the Bound Structure of an Intrinsically Disordered Protein: The p53-TAZ2 Case. Ithuralde RE; Turjanski AG PLoS One; 2016; 11(1):e0144284. PubMed ID: 26742101 [TBL] [Abstract][Full Text] [Related]
12. Structural and thermodynamic characterization of the recognition of the S100-binding peptides TRTK12 and p53 by calmodulin. Wafer LN; Tzul FO; Pandharipande PP; McCallum SA; Makhatadze GI Protein Sci; 2014 Sep; 23(9):1247-61. PubMed ID: 24947426 [TBL] [Abstract][Full Text] [Related]
13. Mapping the interactions of the p53 transactivation domain with the KIX domain of CBP. Lee CW; Arai M; Martinez-Yamout MA; Dyson HJ; Wright PE Biochemistry; 2009 Mar; 48(10):2115-24. PubMed ID: 19220000 [TBL] [Abstract][Full Text] [Related]
14. Phosphorylation of the C-terminal sites of human p53 reduces non-sequence-specific DNA binding as modeled with synthetic peptides. Hoffmann R; Craik DJ; Pierens G; Bolger RE; Otvos L Biochemistry; 1998 Sep; 37(39):13755-64. PubMed ID: 9753464 [TBL] [Abstract][Full Text] [Related]
15. Binding of Rad51 and other peptide sequences to a promiscuous, highly electrostatic binding site in p53. Friedler A; Veprintsev DB; Rutherford T; von Glos KI; Fersht AR J Biol Chem; 2005 Mar; 280(9):8051-9. PubMed ID: 15611070 [TBL] [Abstract][Full Text] [Related]
16. Folding of tetrameric p53: oligomerization and tumorigenic mutations induce misfolding and loss of function. Lubin DJ; Butler JS; Loh SN J Mol Biol; 2010 Jan; 395(4):705-16. PubMed ID: 19913028 [TBL] [Abstract][Full Text] [Related]
17. Tracing the evolution of the p53 tetramerization domain. Joerger AC; Wilcken R; Andreeva A Structure; 2014 Sep; 22(9):1301-1310. PubMed ID: 25185827 [TBL] [Abstract][Full Text] [Related]
18. Ultraslow oligomerization equilibria of p53 and its implications. Natan E; Hirschberg D; Morgner N; Robinson CV; Fersht AR Proc Natl Acad Sci U S A; 2009 Aug; 106(34):14327-32. PubMed ID: 19667193 [TBL] [Abstract][Full Text] [Related]
19. Dimerization of the core domain of the p53 family: a computational study. Madhumalar A; Jun LH; Lane DP; Verma CS Cell Cycle; 2009 Jan; 8(1):137-48. PubMed ID: 19106606 [TBL] [Abstract][Full Text] [Related]
20. The p53 tetramer shows an induced-fit interaction of the C-terminal domain with the DNA-binding domain. D'Abramo M; Bešker N; Desideri A; Levine AJ; Melino G; Chillemi G Oncogene; 2016 Jun; 35(25):3272-81. PubMed ID: 26477317 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]