BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 22694139)

  • 1. An insight into the origin and functional evolution of bacterial aromatic ring-hydroxylating oxygenases.
    Chakraborty J; Ghosal D; Dutta A; Dutta TK
    J Biomol Struct Dyn; 2012; 30(4):419-36. PubMed ID: 22694139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A profile of ring-hydroxylating oxygenases that degrade aromatic pollutants.
    Peng RH; Xiong AS; Xue Y; Fu XY; Gao F; Zhao W; Tian YS; Yao QH
    Rev Environ Contam Toxicol; 2010; 206():65-94. PubMed ID: 20652669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New classification system for oxygenase components involved in ring-hydroxylating oxygenations.
    Nam JW; Nojiri H; Yoshida T; Habe H; Yamane H; Omori T
    Biosci Biotechnol Biochem; 2001 Feb; 65(2):254-63. PubMed ID: 11302156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From lipid transport to oxygenation of aromatic compounds: evolution within the Bet v1-like superfamily.
    Chakraborty J; Dutta TK
    J Biomol Struct Dyn; 2011 Aug; 29(1):67-78. PubMed ID: 21696226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ring-Hydroxylating Oxygenase database: a database of bacterial aromatic ring-hydroxylating oxygenases in the management of bioremediation and biocatalysis of aromatic compounds.
    Chakraborty J; Jana T; Saha S; Dutta TK
    Environ Microbiol Rep; 2014 Oct; 6(5):519-23. PubMed ID: 25646545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new classification system for bacterial Rieske non-heme iron aromatic ring-hydroxylating oxygenases.
    Kweon O; Kim SJ; Baek S; Chae JC; Adjei MD; Baek DH; Kim YC; Cerniglia CE
    BMC Biochem; 2008 Apr; 9():11. PubMed ID: 18387195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substrate specificity and structural characteristics of the novel Rieske nonheme iron aromatic ring-hydroxylating oxygenases NidAB and NidA3B3 from Mycobacterium vanbaalenii PYR-1.
    Kweon O; Kim SJ; Freeman JP; Song J; Baek S; Cerniglia CE
    mBio; 2010 Jun; 1(2):. PubMed ID: 20714442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of the terminal oxygenase component of biphenyl dioxygenase derived from Rhodococcus sp. strain RHA1.
    Furusawa Y; Nagarajan V; Tanokura M; Masai E; Fukuda M; Senda T
    J Mol Biol; 2004 Sep; 342(3):1041-52. PubMed ID: 15342255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of NADH-dependent ferredoxin reductase component in biphenyl dioxygenase.
    Senda T; Yamada T; Sakurai N; Kubota M; Nishizaki T; Masai E; Fukuda M; Mitsuidagger Y
    J Mol Biol; 2000 Dec; 304(3):397-410. PubMed ID: 11090282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Homology modeling and docking studies of Comamonas testosteroni B-356 biphenyl-2,3-dioxygenase involved in degradation of polychlorinated biphenyls.
    Baig MS; Manickam N
    Int J Biol Macromol; 2010 Jan; 46(1):47-53. PubMed ID: 19879892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A small family of LLS1-related non-heme oxygenases in plants with an origin amongst oxygenic photosynthesizers.
    Gray J; Wardzala E; Yang M; Reinbothe S; Haller S; Pauli F
    Plant Mol Biol; 2004 Jan; 54(1):39-54. PubMed ID: 15159633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fine-tuning an aromatic ring-hydroxylating oxygenase to degrade high molecular weight polycyclic aromatic hydrocarbon.
    Guo L; Ouyang X; Wang W; Qiu X; Zhao YL; Xu P; Tang H
    J Biol Chem; 2024 Jun; 300(6):107343. PubMed ID: 38705395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox and functional analysis of the Rieske ferredoxin component of the toluene 4-monooxygenase.
    Elsen NL; Moe LA; McMartin LA; Fox BG
    Biochemistry; 2007 Jan; 46(4):976-86. PubMed ID: 17240981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate binding site of naphthalene 1,2-dioxygenase: functional implications of indole binding.
    Carredano E; Karlsson A; Kauppi B; Choudhury D; Parales RE; Parales JV; Lee K; Gibson DT; Eklund H; Ramaswamy S
    J Mol Biol; 2000 Feb; 296(2):701-12. PubMed ID: 10669618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The crystal structure of the ring-hydroxylating dioxygenase from Sphingomonas CHY-1.
    Jakoncic J; Jouanneau Y; Meyer C; Stojanoff V
    FEBS J; 2007 May; 274(10):2470-81. PubMed ID: 17451434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diversity of the C-terminal portion of the biphenyl dioxygenase large subunit.
    Vézina J; Barriault D; Sylvestre M
    J Mol Microbiol Biotechnol; 2008; 15(2-3):139-51. PubMed ID: 18685267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced degradation of polychlorinated biphenyls by directed evolution of biphenyl dioxygenase.
    Kumamaru T; Suenaga H; Mitsuoka M; Watanabe T; Furukawa K
    Nat Biotechnol; 1998 Jul; 16(7):663-6. PubMed ID: 9661201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis for divergent C-H hydroxylation selectivity in two Rieske oxygenases.
    Lukowski AL; Liu J; Bridwell-Rabb J; Narayan ARH
    Nat Commun; 2020 Jun; 11(1):2991. PubMed ID: 32532989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of bacterial RNA polymerase: implications for large-scale bacterial phylogeny, domain accretion, and horizontal gene transfer.
    Iyer LM; Koonin EV; Aravind L
    Gene; 2004 Jun; 335():73-88. PubMed ID: 15194191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection and classification of hyperfine-shifted 1H, 2H, and 15N resonances of the Rieske ferredoxin component of toluene 4-monooxygenase.
    Xia B; Pikus JD; Xia W; McClay K; Steffan RJ; Chae YK; Westler WM; Markley JL; Fox BG
    Biochemistry; 1999 Jan; 38(2):727-39. PubMed ID: 9888813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.