BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 22694167)

  • 21. Drug search for leishmaniasis: a virtual screening approach by grid computing.
    Ochoa R; Watowich SJ; Flórez A; Mesa CV; Robledo SM; Muskus C
    J Comput Aided Mol Des; 2016 Jul; 30(7):541-52. PubMed ID: 27438595
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessing the polyamine metabolism of Plasmodium falciparum as chemotherapeutic target.
    Müller IB; Das Gupta R; Lüersen K; Wrenger C; Walter RD
    Mol Biochem Parasitol; 2008 Jul; 160(1):1-7. PubMed ID: 18455248
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exploration of New and Potent Lead Molecules Against CAAX Prenyl Protease I of Leishmania donovani Through Pharmacophore Based Virtual Screening Approach.
    Prabhu SV; Tiwari K; Suryanarayanan V; Dubey VK; Singh SK
    Comb Chem High Throughput Screen; 2017; 20(3):255-271. PubMed ID: 28116998
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spermidine synthase is required for virulence of Leishmania donovani.
    Gilroy C; Olenyik T; Roberts SC; Ullman B
    Infect Immun; 2011 Jul; 79(7):2764-9. PubMed ID: 21536795
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polyamine metabolism in Leishmania: from arginine to trypanothione.
    Colotti G; Ilari A
    Amino Acids; 2011 Feb; 40(2):269-85. PubMed ID: 20512387
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison and characterization of growth inhibition in L1210 cells by alpha-difluoromethylornithine, an inhibitor of ornithine decarboxylase, and N1,N8-bis(ethyl)spermidine, an apparent regulator of the enzyme.
    Porter CW; Ganis B; Vinson T; Marton LJ; Kramer DL; Bergeron RJ
    Cancer Res; 1986 Dec; 46(12 Pt 1):6279-85. PubMed ID: 3096560
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanistic insights into mode of actions of novel oligopeptidase B inhibitors for combating leishmaniasis.
    Goyal S; Grover S; Dhanjal JK; Goyal M; Tyagi C; Chacko S; Grover A
    J Mol Model; 2014 Mar; 20(3):2099. PubMed ID: 24567150
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crystal structure of human ornithine decarboxylase at 2.1 A resolution: structural insights to antizyme binding.
    Almrud JJ; Oliveira MA; Kern AD; Grishin NV; Phillips MA; Hackert ML
    J Mol Biol; 2000 Jan; 295(1):7-16. PubMed ID: 10623504
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural requirements for novel coenzyme-substrate derivatives to inhibit intracellular ornithine decarboxylase and cell proliferation.
    Wu F; Gehring H
    FASEB J; 2009 Feb; 23(2):565-74. PubMed ID: 18922879
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Novel Inhibitors of Ornithine Decarboxylase of Leishmania Parasite (LdODC): The Parasite Resists LdODC Inhibition by Overexpression of Spermidine Synthase.
    Das M; Singh S; Dubey VK
    Chem Biol Drug Des; 2016 Mar; 87(3):352-60. PubMed ID: 26362015
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A structural insight into the inhibition of human and Leishmania donovani ornithine decarboxylases by 1-amino-oxy-3-aminopropane.
    Dufe VT; Ingner D; Heby O; Khomutov AR; Persson L; Al-Karadaghi S
    Biochem J; 2007 Jul; 405(2):261-8. PubMed ID: 17407445
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Polyamine biosynthesis in Phytomonas: biochemical characterisation of a very unstable ornithine decarboxylase.
    Marcora MS; Cejas S; González NS; Carrillo C; Algranati ID
    Int J Parasitol; 2010 Oct; 40(12):1389-94. PubMed ID: 20406645
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computational study on the inhibition mechanism of cruzain by nitrile-containing molecules.
    Méndez-Lucio O; Romo-Mancillas A; Medina-Franco JL; Castillo R
    J Mol Graph Model; 2012 May; 35():28-35. PubMed ID: 22481076
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of novel S-adenosyl-L-homocysteine hydrolase inhibitors through homology-model-based virtual screening, synthesis, and biological evaluation.
    Khare P; Gupta AK; Gajula PK; Sunkari KY; Jaiswal AK; Das S; Bajpai P; Chakraborty TK; Dube A; Saxena AK
    J Chem Inf Model; 2012 Mar; 52(3):777-91. PubMed ID: 22324915
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of ornithine decarboxylase suppression and polyamine depletion in the antiproliferative activity of polyamine analogs.
    Ghoda L; Basu HS; Porter CW; Marton LJ; Coffino P
    Mol Pharmacol; 1992 Aug; 42(2):302-6. PubMed ID: 1513327
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phenothiazine inhibitors of trypanothione reductase as potential antitrypanosomal and antileishmanial drugs.
    Chan C; Yin H; Garforth J; McKie JH; Jaouhari R; Speers P; Douglas KT; Rock PJ; Yardley V; Croft SL; Fairlamb AH
    J Med Chem; 1998 Jan; 41(2):148-56. PubMed ID: 9457238
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Flavones reversibly inhibit Leishmania donovani tyrosine aminotransferase by binding to the catalytic pocket: An integrated in silico-in vitro approach.
    Sasidharan S; Saudagar P
    Int J Biol Macromol; 2020 Dec; 164():2987-3004. PubMed ID: 32798546
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling of babesipain-1 and identification of natural and synthetic leads for bovine babesiosis drug development.
    Meetei PA; Rathore RS; Prabhu NP; Vindal V
    J Mol Model; 2016 Apr; 22(4):71. PubMed ID: 26969677
    [TBL] [Abstract][Full Text] [Related]  

  • 39. L. donovani XPRT: Molecular characterization and evaluation of inhibitors.
    Patel B; Patel D; Parmar K; Chauhan R; Singh DD; Pappachan A
    Biochim Biophys Acta Proteins Proteom; 2018 Mar; 1866(3):426-441. PubMed ID: 29233758
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of Plasmodium falciparum spermidine synthase active site binders through structure-based virtual screening.
    Jacobsson M; Gäredal M; Schultz J; Karlén A
    J Med Chem; 2008 May; 51(9):2777-86. PubMed ID: 18410081
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.