These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 22694216)
1. Mechanism of the chaperone-like and antichaperone activities of amyloid fibrils of peptides from αA-crystallin. Fukuhara S; Nishigaki T; Miyata K; Tsuchiya N; Waku T; Tanaka N Biochemistry; 2012 Jul; 51(27):5394-401. PubMed ID: 22694216 [TBL] [Abstract][Full Text] [Related]
2. Amyloid fibril formation and chaperone-like activity of peptides from alphaA-crystallin. Tanaka N; Tanaka R; Tokuhara M; Kunugi S; Lee YF; Hamada D Biochemistry; 2008 Mar; 47(9):2961-7. PubMed ID: 18232642 [TBL] [Abstract][Full Text] [Related]
3. AlphaB-crystallin, a small heat-shock protein, prevents the amyloid fibril growth of an amyloid beta-peptide and beta2-microglobulin. Raman B; Ban T; Sakai M; Pasta SY; Ramakrishna T; Naiki H; Goto Y; Rao ChM Biochem J; 2005 Dec; 392(Pt 3):573-81. PubMed ID: 16053447 [TBL] [Abstract][Full Text] [Related]
4. Structural, morphological, and kinetic studies of β-amyloid peptide aggregation on self-assembled monolayers. Wang Q; Shah N; Zhao J; Wang C; Zhao C; Liu L; Li L; Zhou F; Zheng J Phys Chem Chem Phys; 2011 Sep; 13(33):15200-10. PubMed ID: 21769359 [TBL] [Abstract][Full Text] [Related]
5. Effect of introducing a short amyloidogenic sequence from the Aβ peptide at the N-terminus of 18-residue amphipathic helical peptides. SivakamaSundari C; Rukmani S; Nagaraj R J Pept Sci; 2012 Feb; 18(2):122-8. PubMed ID: 22052825 [TBL] [Abstract][Full Text] [Related]
6. Molecular dynamics simulations to investigate the aggregation behaviors of the Abeta(17-42) oligomers. Zhao JH; Liu HL; Liu YF; Lin HY; Fang HW; Ho Y; Tsai WB J Biomol Struct Dyn; 2009 Feb; 26(4):481-90. PubMed ID: 19108587 [TBL] [Abstract][Full Text] [Related]
7. Structure, stability, and chaperone function of alphaA-crystallin: role of N-terminal region. Kundu M; Sen PC; Das KP Biopolymers; 2007 Jun; 86(3):177-92. PubMed ID: 17345631 [TBL] [Abstract][Full Text] [Related]
8. Amyloid fibril recognition with the conformational B10 antibody fragment depends on electrostatic interactions. Haupt C; Morgado I; Kumar ST; Parthier C; Bereza M; Hortschansky P; Stubbs MT; Horn U; Fändrich M J Mol Biol; 2011 Jan; 405(2):341-8. PubMed ID: 21059358 [TBL] [Abstract][Full Text] [Related]
9. Interaction of the molecular chaperone alphaB-crystallin with alpha-synuclein: effects on amyloid fibril formation and chaperone activity. Rekas A; Adda CG; Andrew Aquilina J; Barnham KJ; Sunde M; Galatis D; Williamson NA; Masters CL; Anders RF; Robinson CV; Cappai R; Carver JA J Mol Biol; 2004 Jul; 340(5):1167-83. PubMed ID: 15236975 [TBL] [Abstract][Full Text] [Related]
10. Positional effects of phosphorylation on the stability and morphology of tau-related amyloid fibrils. Inoue M; Konno T; Tainaka K; Nakata E; Yoshida HO; Morii T Biochemistry; 2012 Feb; 51(7):1396-406. PubMed ID: 22304362 [TBL] [Abstract][Full Text] [Related]
11. A single Asp isomer substitution in an αA-crystallin-derived peptide induces a large change in peptide properties. Magami K; Kim I; Fujii N Exp Eye Res; 2020 Mar; 192():107930. PubMed ID: 31931001 [TBL] [Abstract][Full Text] [Related]
12. Molecular dynamics simulations of Aβ fibril interactions with β-sheet breaker peptides. Bruce NJ; Chen D; Dastidar SG; Marks GE; Schein CH; Bryce RA Peptides; 2010 Nov; 31(11):2100-8. PubMed ID: 20691234 [TBL] [Abstract][Full Text] [Related]
13. NMR characterization of the interaction of GroEL with amyloid β as a model ligand. Yagi-Utsumi M; Kunihara T; Nakamura T; Uekusa Y; Makabe K; Kuwajima K; Kato K FEBS Lett; 2013 Jun; 587(11):1605-9. PubMed ID: 23603391 [TBL] [Abstract][Full Text] [Related]
14. Assembling amyloid fibrils from designed structures containing a significant amyloid beta-peptide fragment. Tjernberg LO; Tjernberg A; Bark N; Shi Y; Ruzsicska BP; Bu Z; Thyberg J; Callaway DJ Biochem J; 2002 Aug; 366(Pt 1):343-51. PubMed ID: 12023906 [TBL] [Abstract][Full Text] [Related]
15. Structure and intermolecular dynamics of aggregates populated during amyloid fibril formation studied by hydrogen/deuterium exchange. Carulla N; Zhou M; Giralt E; Robinson CV; Dobson CM Acc Chem Res; 2010 Aug; 43(8):1072-9. PubMed ID: 20557067 [TBL] [Abstract][Full Text] [Related]
16. αA-crystallin-derived minichaperone stabilizes αAG98R-crystallin by affecting its zeta potential. Phadte AS; Santhoshkumar P; Sharma KK Mol Vis; 2018; 24():297-304. PubMed ID: 29706763 [TBL] [Abstract][Full Text] [Related]
17. Peptides that form β-sheets on hydrophobic surfaces accelerate surface-induced insulin amyloidal aggregation. Nault L; Vendrely C; Bréchet Y; Bruckert F; Weidenhaupt M FEBS Lett; 2013 May; 587(9):1281-6. PubMed ID: 23510797 [TBL] [Abstract][Full Text] [Related]
18. Addition of αA-crystallin sequence 164-173 to a mini-chaperone DFVIFLDVKHFSPEDLT alters the conformation but not the chaperone-like activity. Raju M; Santhoshkumar P; Xie L; Sharma KK Biochemistry; 2014 Apr; 53(16):2615-23. PubMed ID: 24697516 [TBL] [Abstract][Full Text] [Related]
19. Identification of a penta- and hexapeptide of islet amyloid polypeptide (IAPP) with amyloidogenic and cytotoxic properties. Tenidis K; Waldner M; Bernhagen J; Fischle W; Bergmann M; Weber M; Merkle ML; Voelter W; Brunner H; Kapurniotu A J Mol Biol; 2000 Jan; 295(4):1055-71. PubMed ID: 10656810 [TBL] [Abstract][Full Text] [Related]
20. Binding of the molecular chaperone αB-crystallin to Aβ amyloid fibrils inhibits fibril elongation. Shammas SL; Waudby CA; Wang S; Buell AK; Knowles TP; Ecroyd H; Welland ME; Carver JA; Dobson CM; Meehan S Biophys J; 2011 Oct; 101(7):1681-9. PubMed ID: 21961594 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]