BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

470 related articles for article (PubMed ID: 22694310)

  • 21. Generation of an induced pluripotent stem cell line from a Huntington's disease patient with a long HTT-PolyQ sequence.
    Miller DC; Lisowski P; Genehr C; Wanker EE; Priller J; Prigione A; Diecke S
    Stem Cell Res; 2023 Apr; 68():103056. PubMed ID: 36863131
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Induced Pluripotent Stem Cells in Huntington's Disease Research: Progress and Opportunity.
    Tousley A; Kegel-Gleason KB
    J Huntingtons Dis; 2016 Jun; 5(2):99-131. PubMed ID: 27372054
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genetic correction of Huntington's disease phenotypes in induced pluripotent stem cells.
    An MC; Zhang N; Scott G; Montoro D; Wittkop T; Mooney S; Melov S; Ellerby LM
    Cell Stem Cell; 2012 Aug; 11(2):253-63. PubMed ID: 22748967
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Epigenetic alterations mediate iPSC-induced normalization of DNA repair gene expression and TNR stability in Huntington's disease cells.
    Mollica PA; Zamponi M; Reid JA; Sharma DK; White AE; Ogle RC; Bruno RD; Sachs PC
    J Cell Sci; 2018 Jul; 131(13):. PubMed ID: 29898922
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chromosomal instability during neurogenesis in Huntington's disease.
    Ruzo A; Croft GF; Metzger JJ; Galgoczi S; Gerber LJ; Pellegrini C; Wang H; Fenner M; Tse S; Marks A; Nchako C; Brivanlou AH
    Development; 2018 Jan; 145(2):. PubMed ID: 29378824
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Targeting ATM ameliorates mutant Huntingtin toxicity in cell and animal models of Huntington's disease.
    Lu XH; Mattis VB; Wang N; Al-Ramahi I; van den Berg N; Fratantoni SA; Waldvogel H; Greiner E; Osmand A; Elzein K; Xiao J; Dijkstra S; de Pril R; Vinters HV; Faull R; Signer E; Kwak S; Marugan JJ; Botas J; Fischer DF; Svendsen CN; Munoz-Sanjuan I; Yang XW
    Sci Transl Med; 2014 Dec; 6(268):268ra178. PubMed ID: 25540325
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stem cell therapy and cellular engineering for treatment of neuronal dysfunction in Huntington's disease.
    Choi KA; Hwang I; Park HS; Oh SI; Kang S; Hong S
    Biotechnol J; 2014 Jul; 9(7):882-94. PubMed ID: 24827816
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genomic Analysis Reveals Disruption of Striatal Neuronal Development and Therapeutic Targets in Human Huntington's Disease Neural Stem Cells.
    Ring KL; An MC; Zhang N; O'Brien RN; Ramos EM; Gao F; Atwood R; Bailus BJ; Melov S; Mooney SD; Coppola G; Ellerby LM
    Stem Cell Reports; 2015 Dec; 5(6):1023-1038. PubMed ID: 26651603
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lack of huntingtin promotes neural stem cells differentiation into glial cells while neurons expressing huntingtin with expanded polyglutamine tracts undergo cell death.
    Conforti P; Camnasio S; Mutti C; Valenza M; Thompson M; Fossale E; Zeitlin S; MacDonald ME; Zuccato C; Cattaneo E
    Neurobiol Dis; 2013 Feb; 50():160-70. PubMed ID: 23089356
    [TBL] [Abstract][Full Text] [Related]  

  • 30. PPAR-δ is repressed in Huntington's disease, is required for normal neuronal function and can be targeted therapeutically.
    Dickey AS; Pineda VV; Tsunemi T; Liu PP; Miranda HC; Gilmore-Hall SK; Lomas N; Sampat KR; Buttgereit A; Torres MJ; Flores AL; Arreola M; Arbez N; Akimov SS; Gaasterland T; Lazarowski ER; Ross CA; Yeo GW; Sopher BL; Magnuson GK; Pinkerton AB; Masliah E; La Spada AR
    Nat Med; 2016 Jan; 22(1):37-45. PubMed ID: 26642438
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Human-to-mouse prion-like propagation of mutant huntingtin protein.
    Jeon I; Cicchetti F; Cisbani G; Lee S; Li E; Bae J; Lee N; Li L; Im W; Kim M; Kim HS; Oh SH; Kim TA; Ko JJ; Aubé B; Oueslati A; Kim YJ; Song J
    Acta Neuropathol; 2016 Oct; 132(4):577-92. PubMed ID: 27221146
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Human embryonic stem cell models of Huntington disease.
    Niclis J; Trounson AO; Dottori M; Ellisdon A; Bottomley SP; Verlinsky Y; Cram D
    Reprod Biomed Online; 2009 Jul; 19(1):106-13. PubMed ID: 19573298
    [TBL] [Abstract][Full Text] [Related]  

  • 33. HD iPSC-derived neural progenitors accumulate in culture and are susceptible to BDNF withdrawal due to glutamate toxicity.
    Mattis VB; Tom C; Akimov S; Saeedian J; Østergaard ME; Southwell AL; Doty CN; Ornelas L; Sahabian A; Lenaeus L; Mandefro B; Sareen D; Arjomand J; Hayden MR; Ross CA; Svendsen CN
    Hum Mol Genet; 2015 Jun; 24(11):3257-71. PubMed ID: 25740845
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Epigenetic and transcriptional modulation of WDR5, a chromatin remodeling protein, in Huntington's disease human induced pluripotent stem cell (hiPSC) model.
    Baronchelli S; La Spada A; Ntai A; Barbieri A; Conforti P; Jotti GS; Redaelli S; Bentivegna A; De Blasio P; Biunno I
    Mol Cell Neurosci; 2017 Jul; 82():46-57. PubMed ID: 28476540
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Induced pluripotent stem cells from patients with Huntington's disease show CAG-repeat-expansion-associated phenotypes.
    HD iPSC Consortium
    Cell Stem Cell; 2012 Aug; 11(2):264-78. PubMed ID: 22748968
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Immortalized striatal precursor neurons from Huntington's disease patient-derived iPS cells as a platform for target identification and screening for experimental therapeutics.
    Akimov SS; Jiang M; Kedaigle AJ; Arbez N; Marque LO; Eddings CR; Ranum PT; Whelan E; Tang A; Wang R; DeVine LR; Talbot CC; Cole RN; Ratovitski T; Davidson BL; Fraenkel E; Ross CA
    Hum Mol Genet; 2021 Nov; 30(24):2469-2487. PubMed ID: 34296279
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Generation of induced pluripotent stem cell line, ICGi033-A, by reprogramming peripheral blood mononuclear cells from a patient with Huntington's disease.
    Grigor'eva EV; Malakhova AA; Sorogina DA; Pavlova SV; Malankhanova TB; Abramycheva NY; Klyushnikov SA; Illarioshkin SN; Zakian SM
    Stem Cell Res; 2022 Aug; 63():102868. PubMed ID: 35872525
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Use of human stem cells in Huntington disease modeling and translational research.
    Golas MM; Sander B
    Exp Neurol; 2016 Apr; 278():76-90. PubMed ID: 26826449
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Energy Metabolism and Mitochondrial Superoxide Anion Production in Pre-symptomatic Striatal Neurons Derived from Human-Induced Pluripotent Stem Cells Expressing Mutant Huntingtin.
    Hamilton J; Brustovetsky T; Sridhar A; Pan Y; Cummins TR; Meyer JS; Brustovetsky N
    Mol Neurobiol; 2020 Feb; 57(2):668-684. PubMed ID: 31435904
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recent Overview of the Use of iPSCs Huntington's Disease Modeling and Therapy.
    Csobonyeiova M; Polak S; Danisovic L
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32213859
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.