These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 22694317)
1. Substitution of asparagine 76 by a tyrosine residue induces domain swapping in Helicobacter pylori phosphopantetheine adenylyltransferase. Cheng CS; Chen WT; Chen YW; Chen CH; Luo YC; Lyu PC; Yin HS J Biomol Struct Dyn; 2012; 30(4):488-502. PubMed ID: 22694317 [TBL] [Abstract][Full Text] [Related]
2. Crystal structure and biophysical characterisation of Helicobacter pylori phosphopantetheine adenylyltransferase. Cheng CS; Chen CH; Luo YC; Chen WT; Chang SY; Lyu PC; Kao MC; Yin HS Biochem Biophys Res Commun; 2011 May; 408(2):356-61. PubMed ID: 21527250 [TBL] [Abstract][Full Text] [Related]
3. The crystal structures of phosphopantetheine adenylyltransferase with bound substrates reveal the enzyme's catalytic mechanism. Izard T J Mol Biol; 2002 Jan; 315(4):487-95. PubMed ID: 11812124 [TBL] [Abstract][Full Text] [Related]
4. Kinetic, thermodynamic, and structural insight into the mechanism of phosphopantetheine adenylyltransferase from Mycobacterium tuberculosis. Wubben TJ; Mesecar AD J Mol Biol; 2010 Nov; 404(2):202-19. PubMed ID: 20851704 [TBL] [Abstract][Full Text] [Related]
5. Phosphopantetheine adenylyltransferase from Escherichia coli: investigation of the kinetic mechanism and role in regulation of coenzyme A biosynthesis. Miller JR; Ohren J; Sarver RW; Mueller WT; de Dreu P; Case H; Thanabal V J Bacteriol; 2007 Nov; 189(22):8196-205. PubMed ID: 17873050 [TBL] [Abstract][Full Text] [Related]
6. Structural insights into the synthesis of FMN in prokaryotic organisms. Herguedas B; Lans I; Sebastián M; Hermoso JA; Martínez-Júlvez M; Medina M Acta Crystallogr D Biol Crystallogr; 2015 Dec; 71(Pt 12):2526-42. PubMed ID: 26627660 [TBL] [Abstract][Full Text] [Related]
8. Role of the amino acid sequence in domain swapping of the B1 domain of protein G. Sirota FL; Héry-Huynh S; Maurer-Stroh S; Wodak SJ Proteins; 2008 Jul; 72(1):88-104. PubMed ID: 18186476 [TBL] [Abstract][Full Text] [Related]
9. The crystal structure of a novel bacterial adenylyltransferase reveals half of sites reactivity. Izard T; Geerlof A EMBO J; 1999 Apr; 18(8):2021-30. PubMed ID: 10205156 [TBL] [Abstract][Full Text] [Related]
10. The crystal structure of Helicobacter cysteine-rich protein C at 2.0 A resolution: similar peptide-binding sites in TPR and SEL1-like repeat proteins. Lüthy L; Grütter MG; Mittl PR J Mol Biol; 2004 Jul; 340(4):829-41. PubMed ID: 15223324 [TBL] [Abstract][Full Text] [Related]
11. Substrate-induced asymmetry and channel closure revealed by the apoenzyme structure of Mycobacterium tuberculosis phosphopantetheine adenylyltransferase. Morris VK; Izard T Protein Sci; 2004 Sep; 13(9):2547-52. PubMed ID: 15322293 [TBL] [Abstract][Full Text] [Related]
12. Crystallization and preliminary X-ray crystallographic studies of phosphopantetheine adenylyltransferase from Helicobacter pylori. Eom SJ; Ahn HJ; Kim HW; Baek SH; Suh SW Acta Crystallogr D Biol Crystallogr; 2003 Mar; 59(Pt 3):561-2. PubMed ID: 12595726 [TBL] [Abstract][Full Text] [Related]
13. Relevance of the conserved histidine and asparagine residues in the phosphate-binding loop of the nucleotide binding subunit B of A₁A₀ ATP synthases. Tadwal VS; Sundararaman L; Manimekalai MS; Hunke C; Grüber G J Struct Biol; 2012 Dec; 180(3):509-18. PubMed ID: 23063756 [TBL] [Abstract][Full Text] [Related]
14. Crystal structure of phosphopantetheine adenylyltransferase from Enterococcus faecalis in the ligand-unbound state and in complex with ATP and pantetheine. Yoon HJ; Kang JY; Mikami B; Lee HH; Suh SW Mol Cells; 2011 Nov; 32(5):431-5. PubMed ID: 21912874 [TBL] [Abstract][Full Text] [Related]
15. A novel adenylate binding site confers phosphopantetheine adenylyltransferase interactions with coenzyme A. Izard T J Bacteriol; 2003 Jul; 185(14):4074-80. PubMed ID: 12837781 [TBL] [Abstract][Full Text] [Related]
16. A structural view of the dissociation of Escherichia coli tryptophanase. Green K; Qasim N; Gdaelvsky G; Kogan A; Goldgur Y; Parola AH; Lotan O; Almog O Acta Crystallogr D Biol Crystallogr; 2015 Dec; 71(Pt 12):2364-71. PubMed ID: 26627645 [TBL] [Abstract][Full Text] [Related]
17. Overexpression and purification of Pyrococcus abyssi phosphopantetheine adenylyltransferase from an optimized synthetic gene for NMR studies. Nálezková M; de Groot A; Graf M; Gans P; Blanchard L Protein Expr Purif; 2005 Feb; 39(2):296-306. PubMed ID: 15642482 [TBL] [Abstract][Full Text] [Related]
18. Mutational analysis and NMR spectroscopy of quail cysteine and glycine-rich protein CRP2 reveal an intrinsic segmental flexibility of LIM domains. Kloiber K; Weiskirchen R; Kräutler B; Bister K; Konrat R J Mol Biol; 1999 Oct; 292(4):893-908. PubMed ID: 10525413 [TBL] [Abstract][Full Text] [Related]
19. Crystal structure of a pyrimidine dimer-specific excision repair enzyme from bacteriophage T4: refinement at 1.45 A and X-ray analysis of the three active site mutants. Morikawa K; Ariyoshi M; Vassylyev DG; Matsumoto O; Katayanagi K; Ohtsuka E J Mol Biol; 1995 Jun; 249(2):360-75. PubMed ID: 7783199 [TBL] [Abstract][Full Text] [Related]
20. Mutational analysis of the folding transition state of the C-terminal domain of ribosomal protein L9: a protein with an unusual beta-sheet topology. Li Y; Gupta R; Cho JH; Raleigh DP Biochemistry; 2007 Jan; 46(4):1013-21. PubMed ID: 17240985 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]