These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

489 related articles for article (PubMed ID: 22694348)

  • 21. Repeated bouts of exhaustive exercise increase circulating cell free nuclear and mitochondrial DNA without development of tolerance in healthy men.
    Stawski R; Walczak K; Kosielski P; Meissner P; Budlewski T; Padula G; Nowak D
    PLoS One; 2017; 12(5):e0178216. PubMed ID: 28542490
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cell-free DNA kinetics in response to muscle-damaging exercise: A drop jump study.
    Juškevičiūtė E; Neuberger E; Eimantas N; Heinkel K; Simon P; Brazaitis M
    Exp Physiol; 2024 Jun; ():. PubMed ID: 38875105
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of the source and prognostic utility of cfDNA in trauma and sepsis.
    Jackson Chornenki NL; Coke R; Kwong AC; Dwivedi DJ; Xu MK; McDonald E; Marshall JC; Fox-Robichaud AE; Charbonney E; Liaw PC
    Intensive Care Med Exp; 2019 May; 7(1):29. PubMed ID: 31119471
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Circulating, cell-free DNA as a marker for exercise load in intermittent sports.
    Haller N; Helmig S; Taenny P; Petry J; Schmidt S; Simon P
    PLoS One; 2018; 13(1):e0191915. PubMed ID: 29370268
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neutrophils release extracellular DNA traps in response to exercise.
    Beiter T; Fragasso A; Hudemann J; Schild M; Steinacker J; Mooren FC; Niess AM
    J Appl Physiol (1985); 2014 Aug; 117(3):325-33. PubMed ID: 24833781
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cell-free plasma DNA as a novel marker of aseptic inflammation severity related to exercise overtraining.
    Fatouros IG; Destouni A; Margonis K; Jamurtas AZ; Vrettou C; Kouretas D; Mastorakos G; Mitrakou A; Taxildaris K; Kanavakis E; Papassotiriou I
    Clin Chem; 2006 Sep; 52(9):1820-4. PubMed ID: 16840584
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Systemic inflammatory response to exhaustive exercise. Cytokine kinetics.
    Suzuki K; Nakaji S; Yamada M; Totsuka M; Sato K; Sugawara K
    Exerc Immunol Rev; 2002; 8():6-48. PubMed ID: 12690937
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Changes in Blood Concentration of Adenosine Triphosphate Metabolism Biomarkers During Incremental Exercise in Highly Trained Athletes of Different Sport Specializations.
    Włodarczyk M; Kusy K; Słomińska E; Krasiński Z; Zieliński J
    J Strength Cond Res; 2019 May; 33(5):1192-1200. PubMed ID: 30908377
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Acute changes in endocrine and fluid balance markers during high-intensity, steady-state, and prolonged endurance running: unexpected increases in oxytocin and brain natriuretic peptide during exercise.
    Hew-Butler T; Noakes TD; Soldin SJ; Verbalis JG
    Eur J Endocrinol; 2008 Dec; 159(6):729-37. PubMed ID: 18794210
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Blood hormones as markers of training stress and overtraining.
    Urhausen A; Gabriel H; Kindermann W
    Sports Med; 1995 Oct; 20(4):251-76. PubMed ID: 8584849
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exercise-Induced Cell-Free DNA Correlates with Energy Expenditure in Multiple Exercise Protocols.
    Nogiec CD; Karlic R; Taborda E; Dunkelbarger S; Fridlich O; Dor Y; Polak P; Li R
    Med Sci Sports Exerc; 2024 May; 56(5):813-821. PubMed ID: 38109167
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Blood lactate response to overtraining in male endurance athletes.
    Bosquet L; Léger L; Legros P
    Eur J Appl Physiol; 2001; 84(1-2):107-14. PubMed ID: 11394238
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Changes of thioredoxin, oxidative stress markers, inflammation and muscle/renal damage following intensive endurance exercise.
    Sugama K; Suzuki K; Yoshitani K; Shiraishi K; Miura S; Yoshioka H; Mori Y; Kometani T
    Exerc Immunol Rev; 2015; 21():130-42. PubMed ID: 25826051
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of speed endurance and strength training on performance, running economy and muscular adaptations in endurance-trained runners.
    Vorup J; Tybirk J; Gunnarsson TP; Ravnholt T; Dalsgaard S; Bangsbo J
    Eur J Appl Physiol; 2016 Jul; 116(7):1331-41. PubMed ID: 27179795
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exercise order in resistance training.
    Simão R; de Salles BF; Figueiredo T; Dias I; Willardson JM
    Sports Med; 2012 Mar; 42(3):251-65. PubMed ID: 22292516
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intermittent and continuous high-intensity exercise training induce similar acute but different chronic muscle adaptations.
    Cochran AJ; Percival ME; Tricarico S; Little JP; Cermak N; Gillen JB; Tarnopolsky MA; Gibala MJ
    Exp Physiol; 2014 May; 99(5):782-91. PubMed ID: 24532598
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Elevated plasma cfDNA may be associated with active lupus nephritis and partially attributed to abnormal regulation of neutrophil extracellular traps (NETs) in patients with systemic lupus erythematosus.
    Zhang S; Lu X; Shu X; Tian X; Yang H; Yang W; Zhang Y; Wang G
    Intern Med; 2014; 53(24):2763-71. PubMed ID: 25500436
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The association between circulating neutrophil extracellular trap related biomarkers and retinal vein occlusion incidence: A case-control pilot study.
    Wan W; Liu H; Long Y; Wan W; Li Q; Zhu W; Wu Y
    Exp Eye Res; 2021 Sep; 210():108702. PubMed ID: 34270977
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Post-exercise carbohydrate and energy availability induce independent effects on skeletal muscle cell signalling and bone turnover: implications for training adaptation.
    Hammond KM; Sale C; Fraser W; Tang J; Shepherd SO; Strauss JA; Close GL; Cocks M; Louis J; Pugh J; Stewart C; Sharples AP; Morton JP
    J Physiol; 2019 Sep; 597(18):4779-4796. PubMed ID: 31364768
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Changes in plasma hydroxyproline and plasma cell-free DNA concentrations after higher- versus lower-intensity eccentric cycling.
    Mavropalias G; Calapre L; Morici M; Koeda T; Poon WCK; Barley OR; Gray E; Blazevich AJ; Nosaka K
    Eur J Appl Physiol; 2021 Apr; 121(4):1087-1097. PubMed ID: 33439308
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.