BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 22694734)

  • 1. Hollow and cage-bell structured nanomaterials of noble metals.
    Liu H; Qu J; Chen Y; Li J; Ye F; Lee JY; Yang J
    J Am Chem Soc; 2012 Jul; 134(28):11602-10. PubMed ID: 22694734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A core-shell templated approach to the nanocomposites of silver sulfide and noble metal nanoparticles with hollow/cage-bell structures.
    Liu H; Ye F; Cao H; Ji G; Lee JY; Yang J
    Nanoscale; 2013 Aug; 5(15):6901-7. PubMed ID: 23783584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing the methanol tolerance of platinum nanoparticles for the cathode reaction of direct methanol fuel cells through a geometric design.
    Feng Y; Ye F; Liu H; Yang J
    Sci Rep; 2015 Nov; 5():16219. PubMed ID: 26578100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cage-bell Pt-Pd nanostructures with enhanced catalytic properties and superior methanol tolerance for oxygen reduction reaction.
    Chen D; Ye F; Liu H; Yang J
    Sci Rep; 2016 Apr; 6():24600. PubMed ID: 27079897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective electrocatalysts toward a prototype of the membraneless direct methanol fuel cell.
    Feng Y; Yang J; Liu H; Ye F; Yang J
    Sci Rep; 2014 Jan; 4():3813. PubMed ID: 24448514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A bis(p-sulfonatophenyl)phenylphosphine-based synthesis of hollow Pt nanospheres.
    Yang J; Lee JY; Too HP; Valiyaveettil S
    J Phys Chem B; 2006 Jan; 110(1):125-9. PubMed ID: 16471509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphology and structure controlled synthesis of ruthenium nanoparticles in oleylamine.
    Ye F; Liu H; Yang J; Cao H; Yang J
    Dalton Trans; 2013 Sep; 42(34):12309-16. PubMed ID: 23851416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogeneous Au-Pt nanostructures with enhanced catalytic activity toward oxygen reduction.
    Ye F; Liu H; Hu W; Zhong J; Chen Y; Cao H; Yang J
    Dalton Trans; 2012 Mar; 41(10):2898-903. PubMed ID: 22261896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanosized (mu12-Pt)Pd164-xPtx(CO)72(PPh3)20 (x approximately 7) containing Pt-centered four-shell 165-atom Pd-Pt core with unprecedented intershell bridging carbonyl ligands: comparative analysis of icosahedral shell-growth patterns with geometrically related Pd145(CO)x(PEt3)30 (x approximately 60) containing capped three-shell Pd145 core.
    Mednikov EG; Jewell MC; Dahl LF
    J Am Chem Soc; 2007 Sep; 129(37):11619-30. PubMed ID: 17722929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile synthesis of near-monodisperse Ag@Ni core-shell nanoparticles and their application for catalytic generation of hydrogen.
    Guo H; Chen Y; Chen X; Wen R; Yue GH; Peng DL
    Nanotechnology; 2011 May; 22(19):195604. PubMed ID: 21430312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon-supported Pt^Ag nanostructures as cathode catalysts for oxygen reduction reaction.
    Feng YY; Zhang GR; Ma JH; Liu G; Xu BQ
    Phys Chem Chem Phys; 2011 Mar; 13(9):3863-72. PubMed ID: 21210027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing colloidal metallic nanocatalysis: sharp edges and corners for solid nanoparticles and cage effect for hollow ones.
    Mahmoud MA; Narayanan R; El-Sayed MA
    Acc Chem Res; 2013 Aug; 46(8):1795-805. PubMed ID: 23387515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic catalysis of Au@Ag core-shell nanoparticles stabilized on metal-organic framework.
    Jiang HL; Akita T; Ishida T; Haruta M; Xu Q
    J Am Chem Soc; 2011 Feb; 133(5):1304-6. PubMed ID: 21214205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of core-shell-structured nanoparticles (with a noble-metal or metal oxide core and a chromia shell) and their application in water splitting by means of visible light.
    Maeda K; Sakamoto N; Ikeda T; Ohtsuka H; Xiong A; Lu D; Kanehara M; Teranishi T; Domen K
    Chemistry; 2010 Jul; 16(26):7750-9. PubMed ID: 20564294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled synthesis of dendritic Au@Pt core-shell nanomaterials for use as an effective fuel cell electrocatalyst.
    Wang S; Kristian N; Jiang S; Wang X
    Nanotechnology; 2009 Jan; 20(2):025605. PubMed ID: 19417274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Designed synthesis of MO
    Zhang Z; Jung JC; Yan N
    Nanoscale; 2016 Dec; 8(47):19684-19695. PubMed ID: 27874142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Platinum-based heterogeneous nanomaterials via wet-chemistry approaches toward electrocatalytic applications.
    Qu J; Ye F; Chen D; Feng Y; Yao Q; Liu H; Xie J; Yang J
    Adv Colloid Interface Sci; 2016 Apr; 230():29-53. PubMed ID: 26821984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile synthesis of silver core - silica shell composite nanoparticles.
    Niitsoo O; Couzis A
    J Colloid Interface Sci; 2011 Feb; 354(2):887-90. PubMed ID: 21145562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetically controlled autocatalytic chemical process for bulk production of bimetallic core-shell structured nanoparticles.
    Taufany F; Pan CJ; Rick J; Chou HL; Tsai MC; Hwang BJ; Liu DG; Lee JF; Tang MT; Lee YC; Chen CI
    ACS Nano; 2011 Dec; 5(12):9370-81. PubMed ID: 22047129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spontaneous formation of core/shell bimetallic nanoparticles: a calorimetric study.
    Toshima N; Kanemaru M; Shiraishi Y; Koga Y
    J Phys Chem B; 2005 Sep; 109(34):16326-31. PubMed ID: 16853075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.