These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 22694745)

  • 1. A privileged intraphagocyte niche is responsible for disseminated infection of Staphylococcus aureus in a zebrafish model.
    Prajsnar TK; Hamilton R; Garcia-Lara J; McVicker G; Williams A; Boots M; Foster SJ; Renshaw SA
    Cell Microbiol; 2012 Oct; 14(10):1600-19. PubMed ID: 22694745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel vertebrate model of Staphylococcus aureus infection reveals phagocyte-dependent resistance of zebrafish to non-host specialized pathogens.
    Prajsnar TK; Cunliffe VT; Foster SJ; Renshaw SA
    Cell Microbiol; 2008 Nov; 10(11):2312-25. PubMed ID: 18715285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Staphylococcus aureus infection dynamics.
    Pollitt EJG; Szkuta PT; Burns N; Foster SJ
    PLoS Pathog; 2018 Jun; 14(6):e1007112. PubMed ID: 29902272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Genome-Wide Screen Identifies Factors Involved in
    Yang D; Ho YX; Cowell LM; Jilani I; Foster SJ; Prince LR
    Front Immunol; 2019; 10():45. PubMed ID: 30766531
    [No Abstract]   [Full Text] [Related]  

  • 5. Clonal population expansion of Staphylococcus aureus occurs due to escape from a finite number of intraphagocyte niches.
    Pidwill GR; Pyrah JF; Sutton JAF; Best A; Renshaw SA; Foster SJ
    Sci Rep; 2023 Jan; 13(1):1188. PubMed ID: 36681703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The autophagic response to
    Prajsnar TK; Serba JJ; Dekker BM; Gibson JF; Masud S; Fleming A; Johnston SA; Renshaw SA; Meijer AH
    Autophagy; 2021 Apr; 17(4):888-902. PubMed ID: 32174246
    [No Abstract]   [Full Text] [Related]  

  • 7. Inside job: Staphylococcus aureus host-pathogen interactions.
    Horn J; Stelzner K; Rudel T; Fraunholz M
    Int J Med Microbiol; 2018 Aug; 308(6):607-624. PubMed ID: 29217333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental evolution of
    Alves J; Vrieling M; Ring N; Yebra G; Pickering A; Prajsnar TK; Renshaw SA; Fitzgerald JR
    mBio; 2024 Jun; 15(6):e0034624. PubMed ID: 38682911
    [No Abstract]   [Full Text] [Related]  

  • 9. Staphylococcus aureus host cell invasion and post-invasion events.
    Sinha B; Fraunholz M
    Int J Med Microbiol; 2010 Feb; 300(2-3):170-5. PubMed ID: 19781990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Staphylococcus aureus: setting its sights on the human innate immune system.
    Buchan KD; Foster SJ; Renshaw SA
    Microbiology (Reading); 2019 Apr; 165(4):367-385. PubMed ID: 30625113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Return of the Trojan horse: intracellular phenotype switching and immune evasion by Staphylococcus aureus.
    Garzoni C; Kelley WL
    EMBO Mol Med; 2011 Mar; 3(3):115-7. PubMed ID: 21365763
    [No Abstract]   [Full Text] [Related]  

  • 12. Staphylococcus aureus phenotype switching: an effective bacterial strategy to escape host immune response and establish a chronic infection.
    Tuchscherr L; Medina E; Hussain M; Völker W; Heitmann V; Niemann S; Holzinger D; Roth J; Proctor RA; Becker K; Peters G; Löffler B
    EMBO Mol Med; 2011 Mar; 3(3):129-41. PubMed ID: 21268281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Staphylococci evade the innate immune response by disarming neutrophils and forming biofilms.
    de Vor L; Rooijakkers SHM; van Strijp JAG
    FEBS Lett; 2020 Aug; 594(16):2556-2569. PubMed ID: 32144756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clonal expansion during Staphylococcus aureus infection dynamics reveals the effect of antibiotic intervention.
    McVicker G; Prajsnar TK; Williams A; Wagner NL; Boots M; Renshaw SA; Foster SJ
    PLoS Pathog; 2014 Feb; 10(2):e1003959. PubMed ID: 24586163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manipulation of Autophagy in Phagocytes Facilitates Staphylococcus aureus Bloodstream Infection.
    O'Keeffe KM; Wilk MM; Leech JM; Murphy AG; Laabei M; Monk IR; Massey RC; Lindsay JA; Foster TJ; Geoghegan JA; McLoughlin RM
    Infect Immun; 2015 Sep; 83(9):3445-57. PubMed ID: 26099586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Establishment of multi-site infection model in zebrafish larvae for studying Staphylococcus aureus infectious disease.
    Li YJ; Hu B
    J Genet Genomics; 2012 Sep; 39(9):521-34. PubMed ID: 23021551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycolytic dependency of high-level nitric oxide resistance and virulence in Staphylococcus aureus.
    Vitko NP; Spahich NA; Richardson AR
    mBio; 2015 Apr; 6(2):. PubMed ID: 25852157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracellular survival of Staphylococcus aureus during persistent infection in the insect Tenebrio molitor.
    McGonigle JE; Purves J; Rolff J
    Dev Comp Immunol; 2016 Jun; 59():34-8. PubMed ID: 26778297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploiting dominant-negative toxins to combat Staphylococcus aureus pathogenesis.
    Reyes-Robles T; Lubkin A; Alonzo F; Lacy DB; Torres VJ
    EMBO Rep; 2016 Mar; 17(3):428-40. PubMed ID: 26882549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Staphylococcus aureus virulence factors in evasion from innate immune defenses in human and animal diseases.
    Zecconi A; Scali F
    Immunol Lett; 2013 Feb; 150(1-2):12-22. PubMed ID: 23376548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.