These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 22694745)

  • 21. Neutrophils versus Staphylococcus aureus: a biological tug of war.
    Spaan AN; Surewaard BG; Nijland R; van Strijp JA
    Annu Rev Microbiol; 2013; 67():629-50. PubMed ID: 23834243
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The surreptitious survival of the emerging pathogen Staphylococcus lugdunensis within macrophages as an immune evasion strategy.
    Flannagan RS; Watson DW; Surewaard BGJ; Kubes P; Heinrichs DE
    Cell Microbiol; 2018 Nov; 20(11):e12869. PubMed ID: 29904997
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Role of Macrophages in
    Pidwill GR; Gibson JF; Cole J; Renshaw SA; Foster SJ
    Front Immunol; 2020; 11():620339. PubMed ID: 33542723
    [No Abstract]   [Full Text] [Related]  

  • 24. Immune Evasion by
    de Jong NWM; van Kessel KPM; van Strijp JAG
    Microbiol Spectr; 2019 Mar; 7(2):. PubMed ID: 30927347
    [No Abstract]   [Full Text] [Related]  

  • 25. Staphylococcus aureus versus neutrophil: Scrutiny of ancient combat.
    Nasser A; Moradi M; Jazireian P; Safari H; Alizadeh-Sani M; Pourmand MR; Azimi T
    Microb Pathog; 2019 Jun; 131():259-269. PubMed ID: 31002964
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High vancomycin MICs within the susceptible range in Staphylococcus aureus bacteraemia isolates are associated with increased cell wall thickness and reduced intracellular killing by human phagocytes.
    Falcón R; Martínez A; Albert E; Madrid S; Oltra R; Giménez E; Soriano M; Vinuesa V; Gozalbo D; Gil ML; Navarro D
    Int J Antimicrob Agents; 2016 May; 47(5):343-50. PubMed ID: 27056298
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A zebrafish high throughput screening system used for Staphylococcus epidermidis infection marker discovery.
    Veneman WJ; Stockhammer OW; de Boer L; Zaat SA; Meijer AH; Spaink HP
    BMC Genomics; 2013 Apr; 14():255. PubMed ID: 23586901
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Staphylococcus epidermidis strategies to avoid killing by human neutrophils.
    Cheung GY; Rigby K; Wang R; Queck SY; Braughton KR; Whitney AR; Teintze M; DeLeo FR; Otto M
    PLoS Pathog; 2010 Oct; 6(10):e1001133. PubMed ID: 20949069
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Making the Most of the Host; Targeting the Autophagy Pathway Facilitates
    Vozza EG; Mulcahy ME; McLoughlin RM
    Front Immunol; 2021; 12():667387. PubMed ID: 34220813
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Murine Models for Staphylococcal Infection.
    Klopfenstein N; Cassat JE; Monteith A; Miller A; Drury S; Skaar E; Serezani CH
    Curr Protoc; 2021 Mar; 1(3):e52. PubMed ID: 33656290
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Staphylococcus aureus Exploits the Host Apoptotic Pathway To Persist during Infection.
    Winstel V; Schneewind O; Missiakas D
    mBio; 2019 Nov; 10(6):. PubMed ID: 31719177
    [No Abstract]   [Full Text] [Related]  

  • 32. Vancomycin-intermediate Staphylococcus aureus isolates are attenuated for virulence when compared with susceptible progenitors.
    Cameron DR; Lin YH; Trouillet-Assant S; Tafani V; Kostoulias X; Mouhtouris E; Skinner N; Visvanathan K; Baines SL; Howden B; Monk IR; Laurent F; Stinear TP; Howden BP; Peleg AY
    Clin Microbiol Infect; 2017 Oct; 23(10):767-773. PubMed ID: 28396035
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Staphylococcus aureus virulence is enhanced by secreted factors that block innate immune defenses.
    Jongerius I; von Köckritz-Blickwede M; Horsburgh MJ; Ruyken M; Nizet V; Rooijakkers SH
    J Innate Immun; 2012; 4(3):301-11. PubMed ID: 22327617
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Laboratory Mice Are Frequently Colonized with
    Schulz D; Grumann D; Trübe P; Pritchett-Corning K; Johnson S; Reppschläger K; Gumz J; Sundaramoorthy N; Michalik S; Berg S; van den Brandt J; Fister R; Monecke S; Uy B; Schmidt F; Bröker BM; Wiles S; Holtfreter S
    Front Cell Infect Microbiol; 2017; 7():152. PubMed ID: 28512627
    [TBL] [Abstract][Full Text] [Related]  

  • 35. RNAseq Profiling of Leukocyte Populations in Zebrafish Larvae Reveals a
    Rougeot J; Torraca V; Zakrzewska A; Kanwal Z; Jansen HJ; Sommer F; Spaink HP; Meijer AH
    Front Immunol; 2019; 10():832. PubMed ID: 31110502
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Are bloodstream leukocytes Trojan Horses for the metastasis of Staphylococcus aureus?
    Thwaites GE; Gant V
    Nat Rev Microbiol; 2011 Mar; 9(3):215-22. PubMed ID: 21297670
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of a new cytotoxin that contributes to Staphylococcus aureus pathogenesis.
    Dumont AL; Nygaard TK; Watkins RL; Smith A; Kozhaya L; Kreiswirth BN; Shopsin B; Unutmaz D; Voyich JM; Torres VJ
    Mol Microbiol; 2011 Feb; 79(3):814-25. PubMed ID: 21255120
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ClpC affects the intracellular survival capacity of Staphylococcus aureus in non-professional phagocytic cells.
    Gunaratnam G; Tuchscherr L; Elhawy MI; Bertram R; Eisenbeis J; Spengler C; Tschernig T; Löffler B; Somerville GA; Jacobs K; Herrmann M; Bischoff M
    Sci Rep; 2019 Nov; 9(1):16267. PubMed ID: 31700127
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Survival of Staphylococcus aureus inside neutrophils contributes to infection.
    Gresham HD; Lowrance JH; Caver TE; Wilson BS; Cheung AL; Lindberg FP
    J Immunol; 2000 Apr; 164(7):3713-22. PubMed ID: 10725730
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Staphylococcus aureus persistence in non-professional phagocytes.
    Löffler B; Tuchscherr L; Niemann S; Peters G
    Int J Med Microbiol; 2014 Mar; 304(2):170-6. PubMed ID: 24365645
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.