These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 22694746)
1. Partitioning additive genetic variance into genomic and remaining polygenic components for complex traits in dairy cattle. Jensen J; Su G; Madsen P BMC Genet; 2012 Jun; 13():44. PubMed ID: 22694746 [TBL] [Abstract][Full Text] [Related]
2. Comparison of heritabilities of dairy traits in Australian Holstein-Friesian cattle from genomic and pedigree data and implications for genomic evaluations. Haile-Mariam M; Nieuwhof GJ; Beard KT; Konstatinov KV; Hayes BJ J Anim Breed Genet; 2013 Feb; 130(1):20-31. PubMed ID: 23317062 [TBL] [Abstract][Full Text] [Related]
3. Estimates of missing heritability for complex traits in Brown Swiss cattle. Román-Ponce SI; Samoré AB; Dolezal MA; Bagnato A; Meuwissen TH Genet Sel Evol; 2014 Jun; 46(1):36. PubMed ID: 24898214 [TBL] [Abstract][Full Text] [Related]
4. Improvement of prediction ability for genomic selection of dairy cattle by including dominance effects. Sun C; VanRaden PM; Cole JB; O'Connell JR PLoS One; 2014; 9(8):e103934. PubMed ID: 25084281 [TBL] [Abstract][Full Text] [Related]
5. Contribution of rare and low-frequency whole-genome sequence variants to complex traits variation in dairy cattle. Zhang Q; Calus MPL; Guldbrandtsen B; Lund MS; Sahana G Genet Sel Evol; 2017 Aug; 49(1):60. PubMed ID: 28764638 [TBL] [Abstract][Full Text] [Related]
6. Genomic prediction of fertility and calving traits in Holstein cattle based on models including epistatic genetic effects. Alves K; Brito LF; Schenkel FS J Anim Breed Genet; 2023 Sep; 140(5):568-581. PubMed ID: 37254293 [TBL] [Abstract][Full Text] [Related]
7. Genome-wide association study and prediction of genomic breeding values for fatty-acid composition in Korean Hanwoo cattle using a high-density single-nucleotide polymorphism array. Bhuiyan MSA; Kim YK; Kim HJ; Lee DH; Lee SH; Yoon HB; Lee SH J Anim Sci; 2018 Sep; 96(10):4063-4075. PubMed ID: 30265318 [TBL] [Abstract][Full Text] [Related]
8. Accounting for dominance to improve genomic evaluations of dairy cows for fertility and milk production traits. Aliloo H; Pryce JE; González-Recio O; Cocks BG; Hayes BJ Genet Sel Evol; 2016 Feb; 48():8. PubMed ID: 26830030 [TBL] [Abstract][Full Text] [Related]
9. Estimating dominance genetic variances for growth traits in American Angus males using genomic models. Garcia-Baccino CA; Lourenco DAL; Miller S; Cantet RJC; Vitezica ZG J Anim Sci; 2020 Jan; 98(1):. PubMed ID: 31867623 [TBL] [Abstract][Full Text] [Related]
10. Invited review: Genomic selection in dairy cattle: progress and challenges. Hayes BJ; Bowman PJ; Chamberlain AJ; Goddard ME J Dairy Sci; 2009 Feb; 92(2):433-43. PubMed ID: 19164653 [TBL] [Abstract][Full Text] [Related]
11. Genetic progress in multistage dairy cattle breeding schemes using genetic markers. Schrooten C; Bovenhuis H; van Arendonk JA; Bijma P J Dairy Sci; 2005 Apr; 88(4):1569-81. PubMed ID: 15778327 [TBL] [Abstract][Full Text] [Related]
12. Novel use of derived genotype probabilities to discover significant dominance effects for milk production traits in dairy cattle. Boysen TJ; Heuer C; Tetens J; Reinhardt F; Thaller G Genetics; 2013 Feb; 193(2):431-42. PubMed ID: 23222654 [TBL] [Abstract][Full Text] [Related]
13. Symposium review: Single-step genomic evaluations in dairy cattle. Mäntysaari EA; Koivula M; Strandén I J Dairy Sci; 2020 Jun; 103(6):5314-5326. PubMed ID: 32331883 [TBL] [Abstract][Full Text] [Related]
14. Improving accuracy of genomic predictions within and between dairy cattle breeds with imputed high-density single nucleotide polymorphism panels. Erbe M; Hayes BJ; Matukumalli LK; Goswami S; Bowman PJ; Reich CM; Mason BA; Goddard ME J Dairy Sci; 2012 Jul; 95(7):4114-29. PubMed ID: 22720968 [TBL] [Abstract][Full Text] [Related]
15. A simple method for genomic selection of moderately sized dairy cattle populations. Weller JI; Ron M; Glick G; Shirak A; Zeron Y; Ezra E Animal; 2012 Feb; 6(2):193-202. PubMed ID: 22436176 [TBL] [Abstract][Full Text] [Related]
16. A comparison of five methods to predict genomic breeding values of dairy bulls from genome-wide SNP markers. Moser G; Tier B; Crump RE; Khatkar MS; Raadsma HW Genet Sel Evol; 2009 Dec; 41(1):56. PubMed ID: 20043835 [TBL] [Abstract][Full Text] [Related]
17. Comparison on genomic predictions using three GBLUP methods and two single-step blending methods in the Nordic Holstein population. Gao H; Christensen OF; Madsen P; Nielsen US; Zhang Y; Lund MS; Su G Genet Sel Evol; 2012 Jul; 44(1):8. PubMed ID: 22455934 [TBL] [Abstract][Full Text] [Related]
18. Estimation of additive and non-additive genetic effects for fertility and reproduction traits in North American Holstein cattle using genomic information. Alves K; Brito LF; Baes CF; Sargolzaei M; Robinson JAB; Schenkel FS J Anim Breed Genet; 2020 May; 137(3):316-330. PubMed ID: 31912573 [TBL] [Abstract][Full Text] [Related]
19. Comparison of genomic predictions using medium-density (∼54,000) and high-density (∼777,000) single nucleotide polymorphism marker panels in Nordic Holstein and Red Dairy Cattle populations. Su G; Brøndum RF; Ma P; Guldbrandtsen B; Aamand GP; Lund MS J Dairy Sci; 2012 Aug; 95(8):4657-65. PubMed ID: 22818480 [TBL] [Abstract][Full Text] [Related]
20. Efficiency of multi-breed genomic selection for dairy cattle breeds with different sizes of reference population. Hozé C; Fritz S; Phocas F; Boichard D; Ducrocq V; Croiseau P J Dairy Sci; 2014; 97(6):3918-29. PubMed ID: 24704232 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]