These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
353 related articles for article (PubMed ID: 22695359)
1. The cybernetic rehabilitation aid: preliminary results for wrist and elbow motions in healthy subjects. Akdogan E; Shima K; Kataoka H; Hasegawa M; Otsuka A; Tsuji T IEEE Trans Neural Syst Rehabil Eng; 2012 Sep; 20(5):697-707. PubMed ID: 22695359 [TBL] [Abstract][Full Text] [Related]
2. Application of EMG signals for controlling exoskeleton robots. Fleischer C; Wege A; Kondak K; Hommel G Biomed Tech (Berl); 2006 Dec; 51(5-6):314-9. PubMed ID: 17155866 [TBL] [Abstract][Full Text] [Related]
3. Surface myoelectric signal classification for prostheses control. Al-Assaf Y; Al-Nashash H J Med Eng Technol; 2005; 29(5):203-7. PubMed ID: 16126579 [TBL] [Abstract][Full Text] [Related]
4. Robot-assisted humanized passive rehabilitation training based on online assessment and regulation. Pan L; Song A; Duan S; Xu B Biomed Mater Eng; 2015; 26 Suppl 1():S655-64. PubMed ID: 26406061 [TBL] [Abstract][Full Text] [Related]
5. Robot-aided neurorehabilitation: a robot for wrist rehabilitation. Krebs HI; Volpe BT; Williams D; Celestino J; Charles SK; Lynch D; Hogan N IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):327-35. PubMed ID: 17894265 [TBL] [Abstract][Full Text] [Related]
6. The effects of electromechanical wrist robot assistive system with neuromuscular electrical stimulation for stroke rehabilitation. Hu XL; Tong KY; Li R; Xue JJ; Ho SK; Chen P J Electromyogr Kinesiol; 2012 Jun; 22(3):431-9. PubMed ID: 22277205 [TBL] [Abstract][Full Text] [Related]
7. Kinematic design to improve ergonomics in human machine interaction. Schiele A; van der Helm FC IEEE Trans Neural Syst Rehabil Eng; 2006 Dec; 14(4):456-69. PubMed ID: 17190037 [TBL] [Abstract][Full Text] [Related]
8. Research and development of compact wrist rehabilitation robot system. Yamamoto I; Inagawa N; Matsui M; Hachisuka K; Wada F; Hachisuka A Biomed Mater Eng; 2014; 24(1):123-8. PubMed ID: 24211891 [TBL] [Abstract][Full Text] [Related]
9. Online electromyographic control of a robotic prosthesis. Shenoy P; Miller KJ; Crawford B; Rao RN IEEE Trans Biomed Eng; 2008 Mar; 55(3):1128-35. PubMed ID: 18334405 [TBL] [Abstract][Full Text] [Related]
10. Assisting versus repelling force-feedback for learning of a line following task in a wheelchair. Chen X; Agrawal SK IEEE Trans Neural Syst Rehabil Eng; 2013 Nov; 21(6):959-68. PubMed ID: 23475377 [TBL] [Abstract][Full Text] [Related]
11. A rehabilitation robot with force-position hybrid fuzzy controller: hybrid fuzzy control of rehabilitation robot. Ju MS; Lin CC; Lin DH; Hwang IS; Chen SM IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):349-58. PubMed ID: 16200758 [TBL] [Abstract][Full Text] [Related]
12. A comparison between electromyography-driven robot and passive motion device on wrist rehabilitation for chronic stroke. Hu XL; Tong KY; Song R; Zheng XJ; Leung WW Neurorehabil Neural Repair; 2009 Oct; 23(8):837-46. PubMed ID: 19531605 [TBL] [Abstract][Full Text] [Related]
13. Applications of tactile feedback in medicine. Wottawa C; Fan R; Bisley JW; Dutson EP; Culjat MO; Grundfest WS Stud Health Technol Inform; 2011; 163():703-9. PubMed ID: 21335884 [TBL] [Abstract][Full Text] [Related]
14. EMG-based neuro-fuzzy control of a 4DOF upper-limb power-assist exoskeleton. Kiguchi K; Imada Y; Liyanage M Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3040-3. PubMed ID: 18002635 [TBL] [Abstract][Full Text] [Related]
15. Motion Normalized Proportional Control for Improved Pattern Recognition-Based Myoelectric Control. Scheme E; Lock B; Hargrove L; Hill W; Kuruganti U; Englehart K IEEE Trans Neural Syst Rehabil Eng; 2014 Jan; 22(1):149-57. PubMed ID: 23475378 [TBL] [Abstract][Full Text] [Related]
16. Design and validation of a rehabilitation robotic exoskeleton for tremor assessment and suppression. Rocon E; Belda-Lois JM; Ruiz AF; Manto M; Moreno JC; Pons JL IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):367-78. PubMed ID: 17894269 [TBL] [Abstract][Full Text] [Related]
17. Neuro-physical rehabilitation by means of novel touch technologies. Confalonieri M; Tomasi P; Depaul M; Guandalini G; Baldessari M; Oss D; Prada F; Mazzalai A; Da Lio M; De Cecco M Stud Health Technol Inform; 2013; 189():158-63. PubMed ID: 23739376 [TBL] [Abstract][Full Text] [Related]
18. Movement Performance of Human-Robot Cooperation Control Based on EMG-Driven Hill-Type and Proportional Models for an Ankle Power-Assist Exoskeleton Robot. Ao D; Song R; Gao J IEEE Trans Neural Syst Rehabil Eng; 2017 Aug; 25(8):1125-1134. PubMed ID: 27337719 [TBL] [Abstract][Full Text] [Related]
19. Developing a multi-joint upper limb exoskeleton robot for diagnosis, therapy, and outcome evaluation in neurorehabilitation. Ren Y; Kang SH; Park HS; Wu YN; Zhang LQ IEEE Trans Neural Syst Rehabil Eng; 2013 May; 21(3):490-9. PubMed ID: 23096119 [TBL] [Abstract][Full Text] [Related]
20. Estimation of elbow-induced wrist force with EMG signals using fast orthogonal search. Mobasser F; Eklund JM; Hashtrudi-Zaad K IEEE Trans Biomed Eng; 2007 Apr; 54(4):683-93. PubMed ID: 17405375 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]