These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 22695470)
1. First-principles prediction of charge mobility in carbon and organic nanomaterials. Xi J; Long M; Tang L; Wang D; Shuai Z Nanoscale; 2012 Aug; 4(15):4348-69. PubMed ID: 22695470 [TBL] [Abstract][Full Text] [Related]
2. Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: theoretical predictions. Long M; Tang L; Wang D; Li Y; Shuai Z ACS Nano; 2011 Apr; 5(4):2593-600. PubMed ID: 21443198 [TBL] [Abstract][Full Text] [Related]
3. Computational evaluation of optoelectronic properties for organic/carbon materials. Shuai Z; Wang D; Peng Q; Geng H Acc Chem Res; 2014 Nov; 47(11):3301-9. PubMed ID: 24702037 [TBL] [Abstract][Full Text] [Related]
4. Electron-phonon couplings and carrier mobility in graphynes sheet calculated using the Wannier-interpolation approach. Xi J; Wang D; Yi Y; Shuai Z J Chem Phys; 2014 Jul; 141(3):034704. PubMed ID: 25053331 [TBL] [Abstract][Full Text] [Related]
5. Comprehensive approach to intrinsic charge carrier mobility in conjugated organic molecules, macromolecules, and supramolecular architectures. Saeki A; Koizumi Y; Aida T; Seki S Acc Chem Res; 2012 Aug; 45(8):1193-202. PubMed ID: 22676381 [TBL] [Abstract][Full Text] [Related]
6. Carrier Mobility in Graphyne Should Be Even Larger than That in Graphene: A Theoretical Prediction. Chen J; Xi J; Wang D; Shuai Z J Phys Chem Lett; 2013 May; 4(9):1443-8. PubMed ID: 26282296 [TBL] [Abstract][Full Text] [Related]
7. The origin of intrinsic charge transport for Dirac carbon sheet materials: roles of acetylenic linkage and electron-phonon couplings. Liu C; Yang J; Xi J; Ke X Nanoscale; 2019 Jun; 11(22):10828-10837. PubMed ID: 31135021 [TBL] [Abstract][Full Text] [Related]
8. First-Principles Prediction of the Charge Mobility in Black Phosphorus Semiconductor Nanoribbons. Xiao J; Long M; Zhang X; Zhang D; Xu H; Chan KS J Phys Chem Lett; 2015 Oct; 6(20):4141-7. PubMed ID: 26722789 [TBL] [Abstract][Full Text] [Related]
9. Carrier mobility of MoS2 nanoribbons with edge chemical modification. Xiao J; Long M; Li M; Li X; Xu H; Chan K Phys Chem Chem Phys; 2015 Mar; 17(10):6865-73. PubMed ID: 25672652 [TBL] [Abstract][Full Text] [Related]
10. Computational methods for design of organic materials with high charge mobility. Wang L; Nan G; Yang X; Peng Q; Li Q; Shuai Z Chem Soc Rev; 2010 Feb; 39(2):423-34. PubMed ID: 20111768 [TBL] [Abstract][Full Text] [Related]
11. Widely tunable carrier mobility of boron nitride-embedded graphene. Wang J; Zhao R; Liu Z; Liu Z Small; 2013 Apr; 9(8):1373-8. PubMed ID: 23512736 [TBL] [Abstract][Full Text] [Related]
12. Al2C Monolayer Sheet and Nanoribbons with Unique Direction-Dependent Acoustic-Phonon-Limited Carrier Mobility and Carrier Polarity. Xu Y; Dai J; Zeng XC J Phys Chem Lett; 2016 Jan; 7(2):302-7. PubMed ID: 26722716 [TBL] [Abstract][Full Text] [Related]
13. Theoretical predictions of size-dependent carrier mobility and polarity in graphene. Long MQ; Tang L; Wang D; Wang L; Shuai Z J Am Chem Soc; 2009 Dec; 131(49):17728-9. PubMed ID: 19924857 [TBL] [Abstract][Full Text] [Related]
14. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional. Barone V; Hod O; Peralta JE; Scuseria GE Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164 [TBL] [Abstract][Full Text] [Related]
15. Mixed quantum-classical simulations of charge transport in organic materials: numerical benchmark of the Su-Schrieffer-Heeger model. Wang L; Beljonne D; Chen L; Shi Q J Chem Phys; 2011 Jun; 134(24):244116. PubMed ID: 21721621 [TBL] [Abstract][Full Text] [Related]
16. Roles of inter- and intramolecular vibrations and band-hopping crossover in the charge transport in naphthalene crystal. Wang LJ; Peng Q; Li QK; Shuai Z J Chem Phys; 2007 Jul; 127(4):044506. PubMed ID: 17672706 [TBL] [Abstract][Full Text] [Related]
17. Intrinsic carrier mobility of Dirac cones: the limitations of deformation potential theory. Li Z; Wang J; Liu Z J Chem Phys; 2014 Oct; 141(14):144107. PubMed ID: 25318715 [TBL] [Abstract][Full Text] [Related]
18. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Chen JH; Jang C; Xiao S; Ishigami M; Fuhrer MS Nat Nanotechnol; 2008 Apr; 3(4):206-9. PubMed ID: 18654504 [TBL] [Abstract][Full Text] [Related]
19. Full-scale computation for all the thermoelectric property parameters of half-Heusler compounds. Hong AJ; Li L; He R; Gong JJ; Yan ZB; Wang KF; Liu JM; Ren ZF Sci Rep; 2016 Mar; 6():22778. PubMed ID: 26947395 [TBL] [Abstract][Full Text] [Related]
20. Interaction of charge carriers with lattice vibrations in oligoacene crystals from naphthalene to pentacene. Sánchez-Carrera RS; Paramonov P; Day GM; Coropceanu V; Brédas JL J Am Chem Soc; 2010 Oct; 132(41):14437-46. PubMed ID: 20866074 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]