BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 22695574)

  • 1. Design and numerical simulation of an optofluidic pressure sensor.
    Ebnali-Heidari M; Mansouri M; Mokhtarian S; Moravvej-Farshi MK
    Appl Opt; 2012 Jun; 51(16):3387-96. PubMed ID: 22695574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optofluidic pressure sensor based on interferometric imaging.
    Song W; Psaltis D
    Opt Lett; 2010 Nov; 35(21):3604-6. PubMed ID: 21042364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging based optofluidic air flow meter with polymer interferometers defined by soft lithography.
    Song W; Psaltis D
    Opt Express; 2010 Aug; 18(16):16561-6. PubMed ID: 20721045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optofluidic membrane interferometer: An imaging method for measuring microfluidic pressure and flow rate simultaneously on a chip.
    Song W; Psaltis D
    Biomicrofluidics; 2011 Dec; 5(4):44110-4411011. PubMed ID: 22662062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel target-type low pressure drop bidirectional optoelectronic air flow sensor for infant artificial ventilation: measurement principle and static calibration.
    Saccomandi P; Schena E; Silvestri S
    Rev Sci Instrum; 2011 Feb; 82(2):024301. PubMed ID: 21361616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Technique for mechanical measurements using optical scattering from a micropipette.
    Wang WC; Afromowitz M; Hannaford B
    IEEE Trans Biomed Eng; 1994 Mar; 41(3):298-304. PubMed ID: 8045585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement and control of pressure driven flows in microfluidic devices using an optofluidic flow sensor.
    Cheri MS; Shahraki H; Sadeghi J; Moghaddam MS; Latifi H
    Biomicrofluidics; 2014 Sep; 8(5):054123. PubMed ID: 25584118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time measurement of flow rate in microfluidic devices using a cantilever-based optofluidic sensor.
    Cheri MS; Latifi H; Sadeghi J; Moghaddam MS; Shahraki H; Hajghassem H
    Analyst; 2014 Jan; 139(2):431-8. PubMed ID: 24291805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three dimensional transient multifield analysis of a piezoelectric micropump for drug delivery system for treatment of hemodynamic dysfunctions.
    Nisar A; Afzulpurkar N; Tuantranont A; Mahaisavariya B
    Cardiovasc Eng; 2008 Dec; 8(4):203-18. PubMed ID: 19030990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconfigurable optofluidic switch for generation of optical pulse width modulation based on tunable reflective interface.
    Mansuori M; Zareei GH; Hashemi H
    Appl Opt; 2015 Oct; 54(28):E63-8. PubMed ID: 26479666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disposable flow cytometer with high efficiency in particle counting and sizing using an optofluidic lens.
    Song C; Luong TD; Kong TF; Nguyen NT; Asundi AK
    Opt Lett; 2011 Mar; 36(5):657-9. PubMed ID: 21368939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An optofluidic prism tuned by two laminar flows.
    Xiong S; Liu AQ; Chin LK; Yang Y
    Lab Chip; 2011 Jun; 11(11):1864-9. PubMed ID: 21448472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elastomeric 2D grating and hemispherical optofluidic chamber for multifunctional fluidic sensing.
    Xu Z; Wang X; Han K; Li S; Liu GL
    J Opt Soc Am A Opt Image Sci Vis; 2013 Dec; 30(12):2466-72. PubMed ID: 24323007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental and numerical estimations into the force distribution on an occlusal surface utilizing a flexible force sensor array.
    Lin KR; Chang CH; Liu TH; Lin SW; Lin CH
    J Biomech; 2011 Jul; 44(10):1879-84. PubMed ID: 21565347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On-Channel Integrated Optofluidic Pressure Sensor with Optically Boosted Sensitivity.
    Gaber N; Altayyeb A; Soliman SA; Sabry YM; Marty F; Bourouina T
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30813389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The deformation of flexible PDMS microchannels under a pressure driven flow.
    Hardy BS; Uechi K; Zhen J; Pirouz Kavehpour H
    Lab Chip; 2009 Apr; 9(7):935-8. PubMed ID: 19294304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of measurement artefacts in fluoroptic temperature sensors: implications for laser thermal therapy at 810 nm.
    Davidson SR; Vitkin IA; Sherar MD; Whelan WM
    Lasers Surg Med; 2005 Apr; 36(4):297-306. PubMed ID: 15786482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Liquid refractive index sensing independent of opacity using an optofluidic diffraction sensor.
    Xu Z; Han K; Khan I; Wang X; Liu GL
    Opt Lett; 2014 Oct; 39(20):6082-5. PubMed ID: 25361161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal design of a spectral readout type planar waveguide-mode sensor with a monolithic structure.
    Wang X; Fujimaki M; Kato T; Nomura K; Awazu K; Ohki Y
    Opt Express; 2011 Oct; 19(21):20205-13. PubMed ID: 21997031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pneumatically tunable optofluidic 2 × 2 switch for reconfigurable optical circuit.
    Song W; Psaltis D
    Lab Chip; 2011 Jul; 11(14):2397-402. PubMed ID: 21617797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.