BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 22695639)

  • 1. Influence of semiflexible structural features of actin cytoskeleton on cell stiffness based on actin microstructural modeling.
    Wang K; Sun D
    J Biomech; 2012 Jul; 45(11):1900-8. PubMed ID: 22695639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contributions of the active and passive components of the cytoskeletal prestress to stiffening of airway smooth muscle cells.
    Rosenblatt N; Hu S; Suki B; Wang N; Stamenović D
    Ann Biomed Eng; 2007 Feb; 35(2):224-34. PubMed ID: 17151921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical and structural assessment of cortical and deep cytoskeleton reveals substrate-dependent alveolar macrophage remodeling.
    Féréol S; Fodil R; Laurent VM; Planus E; Louis B; Pelle G; Isabey D
    Biomed Mater Eng; 2008; 18(1 Suppl):S105-18. PubMed ID: 18334728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substrate deformation determines actin cytoskeleton reorganization: A mathematical modeling and experimental study.
    Wang JH
    J Theor Biol; 2000 Jan; 202(1):33-41. PubMed ID: 10623497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical modeling of red blood cells during optical stretching.
    Tan Y; Sun D; Huang W
    J Biomech Eng; 2010 Apr; 132(4):044504. PubMed ID: 20387977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constitutive modeling of the stress-strain behavior of F-actin filament networks.
    Palmer JS; Boyce MC
    Acta Biomater; 2008 May; 4(3):597-612. PubMed ID: 18325860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational investigation of in situ chondrocyte deformation and actin cytoskeleton remodelling under physiological loading.
    Dowling EP; Ronan W; McGarry JP
    Acta Biomater; 2013 Apr; 9(4):5943-55. PubMed ID: 23271042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational model for the cell-mechanical response of the osteocyte cytoskeleton based on self-stabilizing tensegrity structures.
    Kardas D; Nackenhorst U; Balzani D
    Biomech Model Mechanobiol; 2013 Jan; 12(1):167-83. PubMed ID: 22527364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A microstructural approach to cytoskeletal mechanics based on tensegrity.
    Stamenović D; Fredberg JJ; Wang N; Butler JP; Ingber DE
    J Theor Biol; 1996 Jul; 181(2):125-36. PubMed ID: 8935591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of LIMK2 RNAi on reorganization of the actin cytoskeleton in osteoblasts induced by fluid shear stress.
    Fu Q; Wu C; Shen Y; Zheng S; Chen R
    J Biomech; 2008 Nov; 41(15):3225-8. PubMed ID: 18805530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How actin crosslinking and bundling proteins cooperate to generate an enhanced cell mechanical response.
    Tseng Y; Kole TP; Lee JS; Fedorov E; Almo SC; Schafer BW; Wirtz D
    Biochem Biophys Res Commun; 2005 Aug; 334(1):183-92. PubMed ID: 15992772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of biomechanical properties of cells through dielectrophoresis-based cell stretching and actin cytoskeleton modeling.
    Bai G; Li Y; Chu HK; Wang K; Tan Q; Xiong J; Sun D
    Biomed Eng Online; 2017 Apr; 16(1):41. PubMed ID: 28376803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying the contribution of actin networks to the elastic strength of fibroblasts.
    Ananthakrishnan R; Guck J; Wottawah F; Schinkinger S; Lincoln B; Romeyke M; Moon T; Käs J
    J Theor Biol; 2006 Sep; 242(2):502-16. PubMed ID: 16720032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-distance propagation of forces in a cell.
    Wang N; Suo Z
    Biochem Biophys Res Commun; 2005 Mar; 328(4):1133-8. PubMed ID: 15707995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of cell mechanical properties by computational modeling of parallel plate compression.
    McGarry JP
    Ann Biomed Eng; 2009 Nov; 37(11):2317-25. PubMed ID: 19680813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Geometric confinement influences cellular mechanical properties I -- adhesion area dependence.
    Su J; Jiang X; Welsch R; Whitesides GM; So PT
    Mol Cell Biomech; 2007 Jun; 4(2):87-104. PubMed ID: 17937113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-frequency affine mechanics and nonaffine relaxation in a model cytoskeleton.
    Head DA; Ikebe E; Nakamasu A; Zhang P; Villaruz LG; Kinoshita S; Ando S; Mizuno D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042711. PubMed ID: 24827282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A three-dimensional random network model of the cytoskeleton and its role in mechanotransduction and nucleus deformation.
    Zeng Y; Yip AK; Teo SK; Chiam KH
    Biomech Model Mechanobiol; 2012 Jan; 11(1-2):49-59. PubMed ID: 21308391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-cell mechanics--An experimental-computational method for quantifying the membrane-cytoskeleton elasticity of cells.
    Tartibi M; Liu YX; Liu GY; Komvopoulos K
    Acta Biomater; 2015 Nov; 27():224-235. PubMed ID: 26300334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of prestressed semiflexible polymer chains as a model of cell rheology.
    Rosenblatt N; Alencar AM; Majumdar A; Suki B; Stamenović D
    Phys Rev Lett; 2006 Oct; 97(16):168101. PubMed ID: 17155438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.