These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 22695680)

  • 1. UV epoxy bonding for enhanced SAW transmission and microscale acoustofluidic integration.
    Langelier SM; Yeo LY; Friend J
    Lab Chip; 2012 Aug; 12(16):2970-6. PubMed ID: 22695680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves.
    Destgeer G; Sung HJ
    Lab Chip; 2015 Jul; 15(13):2722-38. PubMed ID: 26016538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Capillary-based, multifunctional manipulation of particles and fluids
    Pei Z; Tian Z; Yang S; Shen L; Hao N; Naquin TD; Li T; Sun L; Rong W; Huang TJ
    J Phys D Appl Phys; 2024 Aug; 57(30):. PubMed ID: 38800708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances in particle and droplet manipulation for lab-on-a-chip devices based on surface acoustic waves.
    Wang Z; Zhe J
    Lab Chip; 2011 Apr; 11(7):1280-5. PubMed ID: 21301739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication, operation and flow visualization in surface-acoustic-wave-driven acoustic-counterflow microfluidics.
    Travagliati M; Shilton R; Beltram F; Cecchini M
    J Vis Exp; 2013 Aug; (78):. PubMed ID: 24022515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FE analysis of surface acoustic wave transmission in composite piezoelectric wedge structures.
    Darinskii AN; Weihnacht M; Schmidt H
    Ultrasonics; 2018 Mar; 84():366-372. PubMed ID: 29241057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of Nanoheight Channels Incorporating Surface Acoustic Wave Actuation via Lithium Niobate for Acoustic Nanofluidics.
    Zhang N; Friend J
    J Vis Exp; 2020 Feb; (156):. PubMed ID: 32090998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustic wave based MEMS devices for biosensing applications.
    Voiculescu I; Nordin AN
    Biosens Bioelectron; 2012 Mar; 33(1):1-9. PubMed ID: 22310157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of Surface Acoustic Wave Devices on Lithium Niobate.
    Mei J; Zhang N; Friend J
    J Vis Exp; 2020 Jun; (160):. PubMed ID: 32628169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thin film Gallium nitride (GaN) based acoustofluidic Tweezer: Modelling and microparticle manipulation.
    Sun C; Wu F; Fu Y; Wallis DJ; Mikhaylov R; Yuan F; Liang D; Xie Z; Wang H; Tao R; Shen MH; Yang J; Xun W; Wu Z; Yang Z; Cang H; Yang X
    Ultrasonics; 2020 Dec; 108():106202. PubMed ID: 32535411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated active mixing and biosensing using surface acoustic waves (SAW) and surface plasmon resonance (SPR) on a common substrate.
    Renaudin A; Chabot V; Grondin E; Aimez V; Charette PG
    Lab Chip; 2010 Jan; 10(1):111-5. PubMed ID: 20024058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A two-chip acoustofluidic particle manipulation platform with a detachable and reusable surface acoustic wave device.
    Qian J; Ren J; Liu Y; Lam RHW; Lee JE
    Analyst; 2020 Nov; 145(23):7752-7758. PubMed ID: 33001065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal Control Design and Packaging for Surface Acoustic Wave Devices in Acoustofluidics.
    Han J; Yang F; Hu H; Huang Q; Lei Y; Li M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Jan; 69(1):386-398. PubMed ID: 34329161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple acoustofluidic chip for microscale manipulation using evanescent Scholte waves.
    Aubert V; Wunenburger R; Valier-Brasier T; Rabaud D; Kleman JP; Poulain C
    Lab Chip; 2016 Jul; 16(13):2532-9. PubMed ID: 27292590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous flow actuation between external reservoirs in small-scale devices driven by surface acoustic waves.
    Dentry MB; Friend JR; Yeo LY
    Lab Chip; 2014 Feb; 14(4):750-8. PubMed ID: 24336764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling of SAW-PDMS acoustofluidics: physical fields and particle motions influenced by different descriptions of the PDMS domain.
    Ni Z; Yin C; Xu G; Xie L; Huang J; Liu S; Tu J; Guo X; Zhang D
    Lab Chip; 2019 Aug; 19(16):2728-2740. PubMed ID: 31292597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemically resistant microfluidic valves from VitonĀ® membranes bonded to COC and PMMA.
    Ogilvie IR; Sieben VJ; Cortese B; Mowlem MC; Morgan H
    Lab Chip; 2011 Jul; 11(14):2455-9. PubMed ID: 21617822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design, fabrication and characterization of monolithic embedded parylene microchannels in silicon substrate.
    Chen PJ; Shih CY; Tai YC
    Lab Chip; 2006 Jun; 6(6):803-10. PubMed ID: 16738734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lithium-niobate-based surface acoustic wave oscillator directly integrated with CMOS sustaining amplifier.
    Tanaka S; Park K; Esashi M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Aug; 59(8):1800-5. PubMed ID: 22899126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A disposable acoustofluidic chip for nano/microparticle separation using unidirectional acoustic transducers.
    Zhao S; Wu M; Yang S; Wu Y; Gu Y; Chen C; Ye J; Xie Z; Tian Z; Bachman H; Huang PH; Xia J; Zhang P; Zhang H; Huang TJ
    Lab Chip; 2020 Apr; 20(7):1298-1308. PubMed ID: 32195522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.