These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Orthogonal frequency coded filters for use in ultra-wideband communication systems. Gallagher DR; Malocha DC; Puccio D; Saldanha N IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Mar; 55(3):696-703. PubMed ID: 18407859 [TBL] [Abstract][Full Text] [Related]
25. Fabrication of UV epoxy resin masters for the replication of PDMS-based microchips. Pan YJ; Yang RJ Biomed Microdevices; 2007 Aug; 9(4):555-63. PubMed ID: 17508287 [TBL] [Abstract][Full Text] [Related]
27. Acoustofluidic patterning in glass capillaries using travelling acoustic waves based on thin film flexible platform. Wang Q; Maramizonouz S; Stringer Martin M; Zhang J; Ong HL; Liu Q; Yang X; Rahmati M; Torun H; Ng WP; Wu Q; Binns R; Fu Y Ultrasonics; 2024 Jan; 136():107149. PubMed ID: 37703751 [TBL] [Abstract][Full Text] [Related]
28. Advanced Substrate Material for SAW Devices Combining LiNbO₃ and Langasite. Naumenko NF IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Sep; 67(9):1909-1915. PubMed ID: 32286970 [TBL] [Abstract][Full Text] [Related]
29. Ultra-high-frequency (UHF) surface-acoustic-wave (SAW) microfluidics and biosensors. Agostini M; Cecchini M Nanotechnology; 2021 May; 32(31):. PubMed ID: 33887716 [TBL] [Abstract][Full Text] [Related]
30. Acoustofluidics 17: theory and applications of surface acoustic wave devices for particle manipulation. Gedge M; Hill M Lab Chip; 2012 Sep; 12(17):2998-3007. PubMed ID: 22842855 [TBL] [Abstract][Full Text] [Related]
31. SAW diffraction using the thin-element decomposition method. Fagerholm J; Friberg AT; Huttunen J; Morgan DP; Salomaa MM IEEE Trans Ultrason Ferroelectr Freq Control; 1997; 44(2):505-14. PubMed ID: 18244148 [TBL] [Abstract][Full Text] [Related]
32. Acoustic charge transport in GaN nanowires. Ebbecke J; Maisch S; Wixforth A; Calarco R; Meijers R; Marso M; Lüth H Nanotechnology; 2008 Jul; 19(27):275708. PubMed ID: 21828720 [TBL] [Abstract][Full Text] [Related]
33. Voltage controlled SAW velocity in GaAs/LiNbO(3)-hybrids. Rotter M; Ruile W; Wixforth A; Kotthaus JP IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(1):120-5. PubMed ID: 18238405 [TBL] [Abstract][Full Text] [Related]
34. Acoustofluidics 18: Microscopy for acoustofluidic micro-devices. Wiklund M; Brismar H; Onfelt B Lab Chip; 2012 Sep; 12(18):3221-34. PubMed ID: 22871973 [TBL] [Abstract][Full Text] [Related]
35. Quantitative surface acoustic wave detection based on colloidal gold nanoparticles and their bioconjugates. Chiu CS; Gwo S Anal Chem; 2008 May; 80(9):3318-26. PubMed ID: 18363384 [TBL] [Abstract][Full Text] [Related]
36. Low-temperature, simple and fast integration technique of microfluidic chips by using a UV-curable adhesive. Arayanarakool R; Le Gac S; van den Berg A Lab Chip; 2010 Aug; 10(16):2115-21. PubMed ID: 20556303 [TBL] [Abstract][Full Text] [Related]
37. Simple room temperature bonding of thermoplastics and poly(dimethylsiloxane). Sunkara V; Park DK; Hwang H; Chantiwas R; Soper SA; Cho YK Lab Chip; 2011 Mar; 11(5):962-5. PubMed ID: 21152492 [TBL] [Abstract][Full Text] [Related]
38. Rapid fabrication of microfluidic devices in poly(dimethylsiloxane) by photocopying. Tan A; Rodgers K; Murrihy J; O'Mathuna C; Glennon JD Lab Chip; 2001 Sep; 1(1):7-9. PubMed ID: 15100882 [TBL] [Abstract][Full Text] [Related]
39. Characteristics of fundamental acoustic wave modes in thin piezoelectric plates. Joshi SG; Zaitsev BD; Kuznetsova IE; Teplykh AA; Pasachhe A Ultrasonics; 2006 Dec; 44 Suppl 1():e787-91. PubMed ID: 16806378 [TBL] [Abstract][Full Text] [Related]
40. An electrochemical pumping system for on-chip gradient generation. Xie J; Miao Y; Shih J; He Q; Liu J; Tai YC; Lee TD Anal Chem; 2004 Jul; 76(13):3756-63. PubMed ID: 15228351 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]