BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 22695708)

  • 1. Band gap opening in methane intercalated graphene.
    Hargrove J; Shashikala HB; Guerrido L; Ravi N; Wang XQ
    Nanoscale; 2012 Aug; 4(15):4443-6. PubMed ID: 22695708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable band gap in gold intercalated graphene.
    Sapkota I; Roundtree MA; Hall JH; Wang XQ
    Phys Chem Chem Phys; 2012 Dec; 14(46):15991-4. PubMed ID: 23111342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable bands in biased multilayer epitaxial graphene.
    Williams MD; Samarakoon DK; Hess DW; Wang XQ
    Nanoscale; 2012 Apr; 4(9):2962-7. PubMed ID: 22454042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic structure and quantum transport properties of trilayers formed from graphene and boron nitride.
    Zhong X; Amorim RG; Scheicher RH; Pandey R; Karna SP
    Nanoscale; 2012 Sep; 4(17):5490-8. PubMed ID: 22854975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spin-induced band modifications of graphene through intercalation of magnetic iron atoms.
    Sung SJ; Yang JW; Lee PR; Kim JG; Ryu MT; Park HM; Lee G; Hwang CC; Kim KS; Kim JS; Chung JW
    Nanoscale; 2014 Apr; 6(7):3824-9. PubMed ID: 24584481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene adhesion on MoSâ‚‚ monolayer: an ab initio study.
    Ma Y; Dai Y; Guo M; Niu C; Huang B
    Nanoscale; 2011 Sep; 3(9):3883-7. PubMed ID: 21833391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interlayer coupling and electric field tunable electronic properties and Schottky barrier in a graphene/bilayer-GaSe van der Waals heterostructure.
    Phuc HV; Hieu NN; Hoi BD; Nguyen CV
    Phys Chem Chem Phys; 2018 Jul; 20(26):17899-17908. PubMed ID: 29926024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable band gap in hydrogenated bilayer graphene.
    Samarakoon DK; Wang XQ
    ACS Nano; 2010 Jul; 4(7):4126-30. PubMed ID: 20536219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control over band structure and tunneling in bilayer graphene induced by velocity engineering.
    Cheraghchi H; Adinehvand F
    J Phys Condens Matter; 2014 Jan; 26(1):015302. PubMed ID: 24275200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of layer stacking on the electronic structure of graphene nanoribbons.
    Kharche N; Zhou Y; O'Brien KP; Kar S; Nayak SK
    ACS Nano; 2011 Aug; 5(8):6096-101. PubMed ID: 21766785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interfacial coupling in rotational monolayer and bilayer graphene on Ru(0001) from first principles.
    Wang B; Bocquet ML
    Nanoscale; 2012 Aug; 4(15):4687-93. PubMed ID: 22735164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid graphene and graphitic carbon nitride nanocomposite: gap opening, electron-hole puddle, interfacial charge transfer, and enhanced visible light response.
    Du A; Sanvito S; Li Z; Wang D; Jiao Y; Liao T; Sun Q; Ng YH; Zhu Z; Amal R; Smith SC
    J Am Chem Soc; 2012 Mar; 134(9):4393-7. PubMed ID: 22339061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Band gap opening of bilayer graphene by F4-TCNQ molecular doping and externally applied electric field.
    Tian X; Xu J; Wang X
    J Phys Chem B; 2010 Sep; 114(35):11377-81. PubMed ID: 20690622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chiral graphene nanoribbon inside a carbon nanotube: ab initio study.
    Lebedeva IV; Popov AM; Knizhnik AA; Khlobystov AN; Potapkin BV
    Nanoscale; 2012 Aug; 4(15):4522-9. PubMed ID: 22696165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energetics and kinetics of li intercalation in irradiated graphene scaffolds.
    Song J; Ouyang B; Medhekar NV
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):12968-74. PubMed ID: 24256350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AA stacking, tribological and electronic properties of double-layer graphene with krypton spacer.
    Popov AM; Lebedeva IV; Knizhnik AA; Lozovik YE; Potapkin BV; Poklonski NA; Siahlo AI; Vyrko SA
    J Chem Phys; 2013 Oct; 139(15):154705. PubMed ID: 24160531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphene-nickel interfaces: a review.
    Dahal A; Batzill M
    Nanoscale; 2014 Mar; 6(5):2548-62. PubMed ID: 24477601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface doping and band gap tunability in hydrogenated graphene.
    Matis BR; Burgess JS; Bulat FA; Friedman AL; Houston BH; Baldwin JW
    ACS Nano; 2012 Jan; 6(1):17-22. PubMed ID: 22187951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superconducting graphene sheets in CaC6 enabled by phonon-mediated interband interactions.
    Yang SL; Sobota JA; Howard CA; Pickard CJ; Hashimoto M; Lu DH; Mo SK; Kirchmann PS; Shen ZX
    Nat Commun; 2014 Mar; 5():3493. PubMed ID: 24651261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Opening a band gap without breaking lattice symmetry: a new route toward robust graphene-based nanoelectronics.
    Kou L; Hu F; Yan B; Frauenheim T; Chen C
    Nanoscale; 2014 Jul; 6(13):7474-9. PubMed ID: 24881864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.