BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 22695841)

  • 1. Interactions between caveolin-1 and sphingolipids, and their functional relevance.
    Sonnino S; Prioni S; Chigorno V; Prinetti A
    Adv Exp Med Biol; 2012; 749():97-115. PubMed ID: 22695841
    [No Abstract]   [Full Text] [Related]  

  • 2. Membrane microdomains, caveolae, and caveolar endocytosis of sphingolipids.
    Cheng ZJ; Singh RD; Marks DL; Pagano RE
    Mol Membr Biol; 2006; 23(1):101-10. PubMed ID: 16611585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sphingolipids and membrane environments for caveolin.
    Sonnino S; Prinetti A
    FEBS Lett; 2009 Feb; 583(4):597-606. PubMed ID: 19167383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atherosclerosis, caveolae and caveolin-1.
    Pavlides S; Gutierrez-Pajares JL; Danilo C; Lisanti MP; Frank PG
    Adv Exp Med Biol; 2012; 729():127-44. PubMed ID: 22411318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Caveolin-1 in extracellular matrix vesicles secreted from osteoblasts.
    Sawada N; Taketani Y; Amizuka N; Ichikawa M; Ogawa C; Nomoto K; Nashiki K; Sato T; Arai H; Isshiki M; Segawa H; Yamamoto H; Miyamoto K; Takeda E
    Bone; 2007 Jul; 41(1):52-8. PubMed ID: 17448744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Glycosphingolipid microdomains/caveolae and signal transduction].
    Kasahara K; Sanai Y
    Tanpakushitsu Kakusan Koso; 1998 Dec; 43(16 Suppl):2522-30. PubMed ID: 9883682
    [No Abstract]   [Full Text] [Related]  

  • 7. Metabolomic profiling of sphingolipids in human glioma cell lines by liquid chromatography tandem mass spectrometry.
    Sullards MC; Wang E; Peng Q; Merrill AH
    Cell Mol Biol (Noisy-le-grand); 2003 Jul; 49(5):789-97. PubMed ID: 14528916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Caveolin-1 and lipid rafts in confluent BeWo trophoblasts: evidence for Rock-1 association with caveolin-1.
    Rashid-Doubell F; Tannetta D; Redman CW; Sargent IL; Boyd CA; Linton EA
    Placenta; 2007; 28(2-3):139-51. PubMed ID: 16480767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the change in sphingolipids in the human multiple myeloma cell line U266 and gastric cancer cell line MGC-803 treated with arsenic trioxide.
    Zou J; Ma X; Zhang G; Shen L; Zhou L; Yu Y; Zhu F; Chen Z
    J Chromatogr B Analyt Technol Biomed Life Sci; 2015 Nov; 1004():98-107. PubMed ID: 26454796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deletion of integrin linked kinase in endothelial cells results in defective RTK signaling caused by caveolin 1 mislocalization.
    Malan D; Elischer A; Hesse M; Wickström SA; Fleischmann BK; Bloch W
    Development; 2013 Mar; 140(5):987-95. PubMed ID: 23404105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of complex mixtures of sphingolipids in the stratum corneum by reversed-phase high-performance liquid chromatography and atmospheric pressure photospray ionization mass spectrometry.
    Muñoz-Garcia A; Ro J; Brown JC; Williams JB
    J Chromatogr A; 2006 Nov; 1133(1-2):58-68. PubMed ID: 17027012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cutaneous water loss and sphingolipids in the stratum corneum of house sparrows, Passer domesticus L., from desert and mesic environments as determined by reversed phase high-performance liquid chromatography coupled with atmospheric pressure photospray ionization mass spectrometry.
    Muñoz-Garcia A; Ro J; Brown JC; Williams JB
    J Exp Biol; 2008 Feb; 211(Pt 3):447-58. PubMed ID: 18204000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative quantification of sphingolipids and analogs in biological samples by high-performance liquid chromatography after chloroform extraction.
    Andréani P; Gräler MH
    Anal Biochem; 2006 Nov; 358(2):239-46. PubMed ID: 17027903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cutaneous water loss and sphingolipids covalently bound to corneocytes in the stratum corneum of house sparrows Passer domesticus.
    Gu Y; Muñoz-Garcia A; Brown JC; Ro J; Williams JB
    J Exp Biol; 2008 May; 211(Pt 10):1690-5. PubMed ID: 18456896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Caveolin binds independently to claudin-2 and occludin.
    Itallie CM; Anderson JM
    Ann N Y Acad Sci; 2012 Jun; 1257():103-7. PubMed ID: 22671595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid measurement of sphingolipids from Arabidopsis thaliana by reversed-phase high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry.
    Markham JE; Jaworski JG
    Rapid Commun Mass Spectrom; 2007; 21(7):1304-14. PubMed ID: 17340572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Raft association and lipid droplet targeting of flotillins are independent of caveolin.
    Rajendran L; Le Lay S; Illges H
    Biol Chem; 2007 Mar; 388(3):307-14. PubMed ID: 17338638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Caveolin-1: role in cell signaling.
    Boscher C; Nabi IR
    Adv Exp Med Biol; 2012; 729():29-50. PubMed ID: 22411312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent progress in the topology, structure, and oligomerization of caveolin: a building block of caveolae.
    Root KT; Plucinsky SM; Glover KJ
    Curr Top Membr; 2015; 75():305-36. PubMed ID: 26015287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dependence of the sphingoid bases concentration on growth phase and temperature in the yeast Yarrowia lipolytica.
    Bauman M; Mesarić M; Ribar S; Marić V
    J Basic Microbiol; 2002; 42(1):3-12. PubMed ID: 11925759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.