These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
289 related articles for article (PubMed ID: 22695863)
1. Genome-enabled transcriptomics reveals archaeal populations that drive nitrification in a deep-sea hydrothermal plume. Baker BJ; Lesniewski RA; Dick GJ ISME J; 2012 Dec; 6(12):2269-79. PubMed ID: 22695863 [TBL] [Abstract][Full Text] [Related]
2. The metatranscriptome of a deep-sea hydrothermal plume is dominated by water column methanotrophs and lithotrophs. Lesniewski RA; Jain S; Anantharaman K; Schloss PD; Dick GJ ISME J; 2012 Dec; 6(12):2257-68. PubMed ID: 22695860 [TBL] [Abstract][Full Text] [Related]
3. Community transcriptomic assembly reveals microbes that contribute to deep-sea carbon and nitrogen cycling. Baker BJ; Sheik CS; Taylor CA; Jain S; Bhasi A; Cavalcoli JD; Dick GJ ISME J; 2013 Oct; 7(10):1962-73. PubMed ID: 23702516 [TBL] [Abstract][Full Text] [Related]
4. Microbial metatranscriptomics in a permanent marine oxygen minimum zone. Stewart FJ; Ulloa O; DeLong EF Environ Microbiol; 2012 Jan; 14(1):23-40. PubMed ID: 21210935 [TBL] [Abstract][Full Text] [Related]
5. Genomic insights into potential interdependencies in microbial hydrocarbon and nutrient cycling in hydrothermal sediments. Dombrowski N; Seitz KW; Teske AP; Baker BJ Microbiome; 2017 Aug; 5(1):106. PubMed ID: 28835260 [TBL] [Abstract][Full Text] [Related]
6. Close association of active nitrifiers with Beggiatoa mats covering deep-sea hydrothermal sediments. Winkel M; de Beer D; Lavik G; Peplies J; Mußmann M Environ Microbiol; 2014 Jun; 16(6):1612-26. PubMed ID: 24286252 [TBL] [Abstract][Full Text] [Related]
7. Metagenomic resolution of microbial functions in deep-sea hydrothermal plumes across the Eastern Lau Spreading Center. Anantharaman K; Breier JA; Dick GJ ISME J; 2016 Jan; 10(1):225-39. PubMed ID: 26046257 [TBL] [Abstract][Full Text] [Related]
8. Activity, abundance and diversity of nitrifying archaea and bacteria in the central California Current. Santoro AE; Casciotti KL; Francis CA Environ Microbiol; 2010 Jul; 12(7):1989-2006. PubMed ID: 20345944 [TBL] [Abstract][Full Text] [Related]
9. Metabolic Potential of As-yet-uncultured Archaeal Lineages of Candidatus Hydrothermarchaeota Thriving in Deep-sea Metal Sulfide Deposits. Kato S; Nakano S; Kouduka M; Hirai M; Suzuki K; Itoh T; Ohkuma M; Suzuki Y Microbes Environ; 2019 Sep; 34(3):293-303. PubMed ID: 31378759 [TBL] [Abstract][Full Text] [Related]
10. Spatial distribution and abundance of ammonia-oxidizing microorganisms in deep-sea sediments of the Pacific Ocean. Luo ZH; Xu W; Li M; Gu JD; Zhong TH Antonie Van Leeuwenhoek; 2015 Aug; 108(2):329-42. PubMed ID: 26014493 [TBL] [Abstract][Full Text] [Related]
11. Molecular and biogeochemical evidence for ammonia oxidation by marine Crenarchaeota in the Gulf of California. Beman JM; Popp BN; Francis CA ISME J; 2008 Apr; 2(4):429-41. PubMed ID: 18200070 [TBL] [Abstract][Full Text] [Related]
12. Determining the distribution of marine and coastal ammonia-oxidizing archaea and bacteria using a quantitative approach. Mosier AC; Francis CA Methods Enzymol; 2011; 486():205-21. PubMed ID: 21185437 [TBL] [Abstract][Full Text] [Related]
13. Urease gene-containing Archaea dominate autotrophic ammonia oxidation in two acid soils. Lu L; Jia Z Environ Microbiol; 2013 Jun; 15(6):1795-809. PubMed ID: 23298189 [TBL] [Abstract][Full Text] [Related]
14. Change in ammonia-oxidizing microorganisms in enriched nitrifying activated sludge. Sonthiphand P; Limpiyakorn T Appl Microbiol Biotechnol; 2011 Feb; 89(3):843-53. PubMed ID: 20922378 [TBL] [Abstract][Full Text] [Related]
15. Metagenomic Signatures of Microbial Communities in Deep-Sea Hydrothermal Sediments of Azores Vent Fields. Cerqueira T; Barroso C; Froufe H; Egas C; Bettencourt R Microb Ecol; 2018 Aug; 76(2):387-403. PubMed ID: 29354879 [TBL] [Abstract][Full Text] [Related]
16. Nitrosopumilus maritimus gen. nov., sp. nov., Nitrosopumilus cobalaminigenes sp. nov., Nitrosopumilus oxyclinae sp. nov., and Nitrosopumilus ureiphilus sp. nov., four marine ammonia-oxidizing archaea of the phylum Thaumarchaeota. Qin W; Heal KR; Ramdasi R; Kobelt JN; Martens-Habbena W; Bertagnolli AD; Amin SA; Walker CB; Urakawa H; Könneke M; Devol AH; Moffett JW; Armbrust EV; Jensen GJ; Ingalls AE; Stahl DA Int J Syst Evol Microbiol; 2017 Dec; 67(12):5067-5079. PubMed ID: 29034851 [TBL] [Abstract][Full Text] [Related]
17. Population ecology of nitrifying archaea and bacteria in the Southern California Bight. Beman JM; Sachdeva R; Fuhrman JA Environ Microbiol; 2010 May; 12(5):1282-92. PubMed ID: 20192962 [TBL] [Abstract][Full Text] [Related]
18. Genomes of two new ammonia-oxidizing archaea enriched from deep marine sediments. Park SJ; Ghai R; Martín-Cuadrado AB; Rodríguez-Valera F; Chung WH; Kwon K; Lee JH; Madsen EL; Rhee SK PLoS One; 2014; 9(5):e96449. PubMed ID: 24798206 [TBL] [Abstract][Full Text] [Related]
19. Thaumarchaeota from deep-sea methane seeps provide novel insights into their evolutionary history and ecological implications. Li Y; Chen J; Lin Y; Zhong C; Jing H; Liu H Microbiome; 2024 Oct; 12(1):197. PubMed ID: 39385283 [TBL] [Abstract][Full Text] [Related]
20. Evidence for hydrogen oxidation and metabolic plasticity in widespread deep-sea sulfur-oxidizing bacteria. Anantharaman K; Breier JA; Sheik CS; Dick GJ Proc Natl Acad Sci U S A; 2013 Jan; 110(1):330-5. PubMed ID: 23263870 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]