BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 22696262)

  • 1. Kinetics and reaction engineering of levulinic acid production from aqueous glucose solutions.
    Weingarten R; Cho J; Xing R; Conner WC; Huber GW
    ChemSusChem; 2012 Jul; 5(7):1280-90. PubMed ID: 22696262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into the interplay of Lewis and Brønsted acid catalysts in glucose and fructose conversion to 5-(hydroxymethyl)furfural and levulinic acid in aqueous media.
    Choudhary V; Mushrif SH; Ho C; Anderko A; Nikolakis V; Marinkovic NS; Frenkel AI; Sandler SI; Vlachos DG
    J Am Chem Soc; 2013 Mar; 135(10):3997-4006. PubMed ID: 23432136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of levulinic acid and furfural production from Miscanthus × giganteus.
    Dussan K; Girisuta B; Haverty D; Leahy JJ; Hayes MH
    Bioresour Technol; 2013 Dec; 149():216-24. PubMed ID: 24103645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of Levoglucosenone Isomerization.
    Krishna SH; Walker TW; Dumesic JA; Huber GW
    ChemSusChem; 2017 Jan; 10(1):129-138. PubMed ID: 27863100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conversion of red-algae Gracilaria verrucosa to sugars, levulinic acid and 5-hydroxymethylfurfural.
    Jeong GT; Ra CH; Hong YK; Kim JK; Kong IS; Kim SK; Park DH
    Bioprocess Biosyst Eng; 2015 Feb; 38(2):207-17. PubMed ID: 25042893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of Brønsted acid-catalyzed glucose dehydration.
    Yang L; Tsilomelekis G; Caratzoulas S; Vlachos DG
    ChemSusChem; 2015 Apr; 8(8):1334-41. PubMed ID: 25572774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational studies of the thermochemistry for conversion of glucose to levulinic acid.
    Assary RS; Redfern PC; Hammond JR; Greeley J; Curtiss LA
    J Phys Chem B; 2010 Jul; 114(27):9002-9. PubMed ID: 20572641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glucose dehydration to 5-hydroxymethylfurfural in a biphasic system over solid acid foams.
    Ordomsky VV; van der Schaaf J; Schouten JC; Nijhuis TA
    ChemSusChem; 2013 Sep; 6(9):1697-707. PubMed ID: 23616489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conversion of hemicellulose sugars catalyzed by formic acid: kinetics of the dehydration of D-xylose, L-arabinose, and D-glucose.
    Dussan K; Girisuta B; Lopes M; Leahy JJ; Hayes MH
    ChemSusChem; 2015 Apr; 8(8):1411-28. PubMed ID: 25821128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of 5-hydroxymethylfurfural from highly concentrated aqueous fructose solutions using activated carbon.
    Nishimura Y; Suda M; Kuroha M; Kobayashi H; Nakajima K; Fukuoka A
    Carbohydr Res; 2019 Dec; 486():107826. PubMed ID: 31589993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conversion of fructose into 5-hydroxymethylfurfural (HMF) and its derivatives promoted by inorganic salt in alcohol.
    Liu J; Tang Y; Wu K; Bi C; Cui Q
    Carbohydr Res; 2012 Mar; 350():20-4. PubMed ID: 22264628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An integrated effluent free process for the production of 5-hydroxymethyl furfural (HMF), levulinic acid (LA) and KNS-ML from aqueous seaweed extract.
    Kholiya F; Rathod MR; Gangapur DR; Adimurthy S; Meena R
    Carbohydr Res; 2020 Apr; 490():107953. PubMed ID: 32146239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. InCl3-catalyzed conversion of carbohydrates into 5-hydroxymethylfurfural in biphasic system.
    Shen Y; Sun J; Yi Y; Li M; Wang B; Xu F; Sun R
    Bioresour Technol; 2014 Nov; 172():457-460. PubMed ID: 25304730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of sugars and levulinic acid from marine biomass Gelidium amansii.
    Jeong GT; Park DH
    Appl Biochem Biotechnol; 2010 May; 161(1-8):41-52. PubMed ID: 19830598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics study of levulinic acid production from corncobs by tin tetrachloride as catalyst.
    Qing Q; Guo Q; Wang P; Qian H; Gao X; Zhang Y
    Bioresour Technol; 2018 Jul; 260():150-156. PubMed ID: 29625287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Governing chemistry of cellulose hydrolysis in supercritical water.
    Cantero DA; Bermejo MD; Cocero MJ
    ChemSusChem; 2015 Mar; 8(6):1026-33. PubMed ID: 25704124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorous pentoxide mediated synthesis of 5-HMF in ionic liquid at low temperature.
    Ray D; Mittal N; Chung WJ
    Carbohydr Res; 2011 Oct; 346(14):2145-8. PubMed ID: 21889125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conversion of Glucose to 5-Hydroxymethylfurfural in a Microreactor.
    Tongtummachat T; Akkarawatkhoosith N; Kaewchada A; Jaree A
    Front Chem; 2019; 7():951. PubMed ID: 32039159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solvent effect on pathways and mechanisms for D-fructose conversion to 5-hydroxymethyl-2-furaldehyde: in situ 13C NMR study.
    Kimura H; Nakahara M; Matubayasi N
    J Phys Chem A; 2013 Mar; 117(10):2102-13. PubMed ID: 23458365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of 5-hydroxymethylfurfural formation in the sugar-amino acid model of Maillard reaction.
    Zhang LL; Kong Y; Yang X; Zhang YY; Sun BG; Chen HT; Sun Y
    J Sci Food Agric; 2019 Mar; 99(5):2340-2347. PubMed ID: 30338537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.