These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

384 related articles for article (PubMed ID: 22696270)

  • 1. Effects of predicted future and current atmospheric temperature and [CO2] and high and low soil moisture on gas exchange and growth of Pinus taeda seedlings at cool and warm sites in the species range.
    Wertin TM; McGuire MA; Teskey RO
    Tree Physiol; 2012 Jul; 32(7):847-58. PubMed ID: 22696270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Industrial-age changes in atmospheric [CO2] and temperature differentially alter responses of faster- and slower-growing Eucalyptus seedlings to short-term drought.
    Lewis JD; Smith RA; Ghannoum O; Logan BA; Phillips NG; Tissue DT
    Tree Physiol; 2013 May; 33(5):475-88. PubMed ID: 23677118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Higher growth temperatures decreased net carbon assimilation and biomass accumulation of northern red oak seedlings near the southern limit of the species range.
    Wertin TM; McGuire MA; Teskey RO
    Tree Physiol; 2011 Dec; 31(12):1277-88. PubMed ID: 21937670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elevated CO2 increases root exudation from loblolly pine (Pinus taeda) seedlings as an N-mediated response.
    Phillips RP; Bernhardt ES; Schlesinger WH
    Tree Physiol; 2009 Dec; 29(12):1513-23. PubMed ID: 19819875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of induced heat waves on Pinus taeda and Quercus rubra seedlings in ambient and elevated CO2 atmospheres.
    Ameye M; Wertin TM; Bauweraerts I; McGuire MA; Teskey RO; Steppe K
    New Phytol; 2012 Oct; 196(2):448-461. PubMed ID: 22897414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leaf-level gas-exchange uniformity and photosynthetic capacity among loblolly pine (Pinus taeda L.) genotypes of contrasting inherent genetic variation.
    Aspinwall MJ; King JS; McKeand SE; Domec JC
    Tree Physiol; 2011 Jan; 31(1):78-91. PubMed ID: 21389004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of soil and air temperature on CO2 exchange and net biomass accumulation in Norway spruce, Scots pine and silver birch seedlings.
    Pumpanen J; Heinonsalo J; Rasilo T; Villemot J; Ilvesniemi H
    Tree Physiol; 2012 Jun; 32(6):724-36. PubMed ID: 22345325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of heat waves, elevated [CO2 ] and low soil water availability on northern red oak (Quercus rubra L.) seedlings.
    Bauweraerts I; Wertin TM; Ameye M; McGuire MA; Teskey RO; Steppe K
    Glob Chang Biol; 2013 Feb; 19(2):517-28. PubMed ID: 23504789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Timing and magnitude of C partitioning through a young loblolly pine (Pinus taeda L.) stand using 13C labeling and shade treatments.
    Warren JM; Iversen CM; Garten CT; Norby RJ; Childs J; Brice D; Evans RM; Gu L; Thornton P; Weston DJ
    Tree Physiol; 2012 Jun; 32(6):799-813. PubMed ID: 22210530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactive effects of nocturnal transpiration and climate change on the root hydraulic redistribution and carbon and water budgets of southern United States pine plantations.
    Domec JC; Ogée J; Noormets A; Jouangy J; Gavazzi M; Treasure E; Sun G; McNulty SG; King JS
    Tree Physiol; 2012 Jun; 32(6):707-23. PubMed ID: 22467712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Responses of sugar maple and hemlock seedlings to elevated carbon dioxide under altered above- and belowground nitrogen sources.
    Eller AS; McGuire KL; Sparks JP
    Tree Physiol; 2011 Apr; 31(4):391-401. PubMed ID: 21470979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photosynthetic responses of two eucalypts to industrial-age changes in atmospheric [CO2] and temperature.
    Ghannoum O; Phillips NG; Sears MA; Logan BA; Lewis JD; Conroy JP; Tissue DT
    Plant Cell Environ; 2010 Oct; 33(10):1671-81. PubMed ID: 20492554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gas exchange, growth, and defense responses of invasive Alliaria petiolata (Brassicaceae) and native Geum vernum (Rosaceae) to elevated atmospheric CO2 and warm spring temperatures.
    Anderson LJ; Cipollini D
    Am J Bot; 2013 Aug; 100(8):1544-54. PubMed ID: 23857735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of CO
    Tolley LC; Strain BR
    Oecologia; 1985 Jan; 65(2):166-172. PubMed ID: 28310662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential impact of CO2 leakage from carbon capture and storage systems on field bean (Vicia faba).
    Al-Traboulsi M; Sjögersten S; Colls J; Steven M; Black C
    Physiol Plant; 2012 Nov; 146(3):261-71. PubMed ID: 22443472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low moisture availability inhibits the enhancing effect of increased soil temperature on net photosynthesis of white birch (Betula papyrifera) seedlings grown under ambient and elevated carbon dioxide concentrations.
    Ambebe TF; Dang QL
    Tree Physiol; 2009 Nov; 29(11):1341-8. PubMed ID: 19797245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elevated [CO2] does not ameliorate the negative effects of elevated temperature on drought-induced mortality in Eucalyptus radiata seedlings.
    Duan H; Duursma RA; Huang G; Smith RA; Choat B; O'Grady AP; Tissue DT
    Plant Cell Environ; 2014 Jul; 37(7):1598-613. PubMed ID: 24372529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pinus taeda forest growth predictions in the 21st century vary with site mean annual temperature and site quality.
    Gonzalez-Benecke CA; Teskey RO; Dinon-Aldridge H; Martin TA
    Glob Chang Biol; 2017 Nov; 23(11):4689-4705. PubMed ID: 28386943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Branch growth and gas exchange in 13-year-old loblolly pine (Pinus taeda) trees in response to elevated carbon dioxide concentration and fertilization.
    Maier CA; Johnsen KH; Butnor J; Kress LW; Anderson PH
    Tree Physiol; 2002 Nov; 22(15-16):1093-106. PubMed ID: 12414369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pinus taeda clones and soil nutrient availability: effects of soil organic matter incorporation and fertilization on biomass partitioning and leaf physiology.
    Tyree MC; Seiler JR; Maier CA; Johnsen KH
    Tree Physiol; 2009 Sep; 29(9):1117-31. PubMed ID: 19608598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.