BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 22696645)

  • 1. Proteomic analysis of Frankliniella occidentalis and differentially expressed proteins in response to tomato spotted wilt virus infection.
    Badillo-Vargas IE; Rotenberg D; Schneweis DJ; Hiromasa Y; Tomich JM; Whitfield AE
    J Virol; 2012 Aug; 86(16):8793-809. PubMed ID: 22696645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Virus-vectoring thrips regulate the excessive multiplication of tomato spotted wilt virus using their antiviral immune responses.
    Mandal E; Khan F; Kil EJ; Kim Y
    J Gen Virol; 2024 May; 105(5):. PubMed ID: 38717918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression and characterization of a soluble form of tomato spotted wilt virus glycoprotein GN.
    Whitfield AE; Ullman DE; German TL
    J Virol; 2004 Dec; 78(23):13197-206. PubMed ID: 15542672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of an IPM Strategy for Thrips and
    Batuman O; Turini TA; LeStrange M; Stoddard S; Miyao G; Aegerter BJ; Chen LF; McRoberts N; Ullman DE; Gilbertson RL
    Pathogens; 2020 Aug; 9(8):. PubMed ID: 32764311
    [No Abstract]   [Full Text] [Related]  

  • 5. Predictive Models for Tomato Spotted Wilt Virus Spread Dynamics, Considering Frankliniella occidentalis Specific Life Processes as Influenced by the Virus.
    Ogada PA; Moualeu DP; Poehling HM
    PLoS One; 2016; 11(5):e0154533. PubMed ID: 27159134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide identification of cuticle protein superfamily in Frankliniella occidentalis provide insight into the control of both insect vectors and plant virus.
    Zheng Y; Feng Y; Li Z; Wang J
    Arch Insect Biochem Physiol; 2024 Mar; 115(3):e22102. PubMed ID: 38500452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the salivary gland transcriptome of Frankliniella occidentalis.
    Stafford-Banks CA; Rotenberg D; Johnson BR; Whitfield AE; Ullman DE
    PLoS One; 2014; 9(4):e94447. PubMed ID: 24736614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modified expression of alternative oxidase in transgenic tomato and petunia affects the level of tomato spotted wilt virus resistance.
    Ma H; Song C; Borth W; Sether D; Melzer M; Hu J
    BMC Biotechnol; 2011 Oct; 11():96. PubMed ID: 22014312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic and host-associated differentiation within Thrips tabaci Lindeman (Thysanoptera: Thripidae) and its links to Tomato spotted wilt virus-vector competence.
    Westmore GC; Poke FS; Allen GR; Wilson CR
    Heredity (Edinb); 2013 Sep; 111(3):210-5. PubMed ID: 23632893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Life Cycle-Based Host Range Analysis for Tomato Spotted Wilt Virus in Korea.
    Kil EJ; Chung YJ; Choi HS; Lee S; Kim CS
    Plant Pathol J; 2020 Feb; 36(1):67-75. PubMed ID: 32089662
    [No Abstract]   [Full Text] [Related]  

  • 11. Receiver Operating Characteristic curve analysis determines association of individual potato foliage volatiles with onion thrips preference, cultivar and plant age.
    Wilson CR; Davies NW; Corkrey R; Wilson AJ; Mathews AM; Westmore GC
    PLoS One; 2017; 12(7):e0181831. PubMed ID: 28746359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of tomato spotted wilt virus G
    Bahat Y; Alter J; Dessau M
    Proc Natl Acad Sci U S A; 2020 Oct; 117(42):26237-26244. PubMed ID: 33020295
    [No Abstract]   [Full Text] [Related]  

  • 13. The effects of the E3 ubiquitin-protein ligase UBR7 of
    Shi J; Zhou J; Jiang F; Li Z; Zhu S
    PeerJ; 2023; 11():e15385. PubMed ID: 37187513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Effect of Species
    Hameed A; Rosa C; Rajotte EG
    Insects; 2022 Jul; 13(7):. PubMed ID: 35886808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Groundnut Bud Necrosis Virus Modulates the Expression of Innate Immune, Endocytosis, and Cuticle Development-Associated Genes to Circulate and Propagate in Its Vector,
    Mahanta DK; Jangra S; Priti ; Ghosh A; Sharma PK; Iquebal MA; Jaiswal S; Baranwal VK; Kalia VK; Chander S
    Front Microbiol; 2022; 13():773238. PubMed ID: 35369489
    [No Abstract]   [Full Text] [Related]  

  • 16. A Review on Transcriptional Responses of Interactions between Insect Vectors and Plant Viruses.
    Catto MA; Mugerwa H; Myers BK; Pandey S; Dutta B; Srinivasan R
    Cells; 2022 Feb; 11(4):. PubMed ID: 35203347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of transcriptomics and network analysis reveals co-expressed genes in Frankliniella occidentalis larval guts that respond to tomato spotted wilt virus infection.
    Han J; Rotenberg D
    BMC Genomics; 2021 Nov; 22(1):810. PubMed ID: 34758725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-enabled insights into the biology of thrips as crop pests.
    Rotenberg D; Baumann AA; Ben-Mahmoud S; Christiaens O; Dermauw W; Ioannidis P; Jacobs CGC; Vargas Jentzsch IM; Oliver JE; Poelchau MF; Rajarapu SP; Schneweis DJ; Snoeck S; Taning CNT; Wei D; Widana Gamage SMK; Hughes DST; Murali SC; Bailey ST; Bejerman NE; Holmes CJ; Jennings EC; Rosendale AJ; Rosselot A; Hervey K; Schneweis BA; Cheng S; Childers C; Simão FA; Dietzgen RG; Chao H; Dinh H; Doddapaneni HV; Dugan S; Han Y; Lee SL; Muzny DM; Qu J; Worley KC; Benoit JB; Friedrich M; Jones JW; Panfilio KA; Park Y; Robertson HM; Smagghe G; Ullman DE; van der Zee M; Van Leeuwen T; Veenstra JA; Waterhouse RM; Weirauch MT; Werren JH; Whitfield AE; Zdobnov EM; Gibbs RA; Richards S
    BMC Biol; 2020 Oct; 18(1):142. PubMed ID: 33070780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptome response comparison between vector and non-vector aphids after feeding on virus-infected wheat plants.
    Li D; Zhang C; Tong Z; Su D; Zhang G; Zhang S; Zhao H; Hu Z
    BMC Genomics; 2020 Sep; 21(1):638. PubMed ID: 32933469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applications of Proteomic Tools to Study Insect Vector-Plant Virus Interactions.
    Mittapelly P; Rajarapu SP
    Life (Basel); 2020 Aug; 10(8):. PubMed ID: 32784674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.