These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 22697272)

  • 1. Axonal properties determine somatic firing in a model of in vitro CA1 hippocampal sharp wave/ripples and persistent gamma oscillations.
    Traub RD; Schmitz D; Maier N; Whittington MA; Draguhn A
    Eur J Neurosci; 2012 Sep; 36(5):2650-60. PubMed ID: 22697272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Most hippocampal CA1 pyramidal cells in rabbits increase firing during awake sharp-wave ripples and some do so in response to external stimulation and theta.
    Nokia MS; Waselius T; Sahramäki J; Penttonen M
    J Neurophysiol; 2020 May; 123(5):1671-1681. PubMed ID: 32208887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synaptic gating at axonal branches, and sharp-wave ripples with replay: a simulation study.
    Vladimirov N; Tu Y; Traub RD
    Eur J Neurosci; 2013 Nov; 38(10):3435-47. PubMed ID: 23992155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synaptic plasticity by antidromic firing during hippocampal network oscillations.
    Bukalo O; Campanac E; Hoffman DA; Fields RD
    Proc Natl Acad Sci U S A; 2013 Mar; 110(13):5175-80. PubMed ID: 23479613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A model of high-frequency ripples in the hippocampus based on synaptic coupling plus axon-axon gap junctions between pyramidal neurons.
    Traub RD; Bibbig A
    J Neurosci; 2000 Mar; 20(6):2086-93. PubMed ID: 10704482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The hippocampal CA3 region can generate two distinct types of sharp wave-ripple complexes, in vitro.
    Hofer KT; Kandrács Á; Ulbert I; Pál I; Szabó C; Héja L; Wittner L
    Hippocampus; 2015 Feb; 25(2):169-86. PubMed ID: 25209976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A possible role of ectopic action potentials in the in vitro hippocampal sharp wave-ripple complexes.
    Papatheodoropoulos C
    Neuroscience; 2008 Dec; 157(3):495-501. PubMed ID: 18938226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impairment of Sharp-Wave Ripples in a Murine Model of Dravet Syndrome.
    Cheah CS; Lundstrom BN; Catterall WA; Oakley JC
    J Neurosci; 2019 Nov; 39(46):9251-9260. PubMed ID: 31537705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Downstream effects of hippocampal sharp wave ripple oscillations on medial entorhinal cortex layer V neurons in vitro.
    Roth FC; Beyer KM; Both M; Draguhn A; Egorov AV
    Hippocampus; 2016 Dec; 26(12):1493-1508. PubMed ID: 27479916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling sharp wave-ripple complexes through a CA3-CA1 network model with chemical synapses.
    Taxidis J; Coombes S; Mason R; Owen MR
    Hippocampus; 2012 May; 22(5):995-1017. PubMed ID: 21452258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gap junction networks can generate both ripple-like and fast ripple-like oscillations.
    Simon A; Traub RD; Vladimirov N; Jenkins A; Nicholson C; Whittaker RG; Schofield I; Clowry GJ; Cunningham MO; Whittington MA
    Eur J Neurosci; 2014 Jan; 39(1):46-60. PubMed ID: 24118191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model of gamma-frequency network oscillations induced in the rat CA3 region by carbachol in vitro.
    Traub RD; Bibbig A; Fisahn A; LeBeau FE; Whittington MA; Buhl EH
    Eur J Neurosci; 2000 Nov; 12(11):4093-106. PubMed ID: 11069606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational analysis of network activity and spatial reach of sharp wave-ripples.
    Canakci S; Toy MF; Inci AF; Liu X; Kuzum D
    PLoS One; 2017; 12(9):e0184542. PubMed ID: 28915251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Axonal gap junctions between principal neurons: a novel source of network oscillations, and perhaps epileptogenesis.
    Traub RD; Draguhn A; Whittington MA; Baldeweg T; Bibbig A; Buhl EH; Schmitz D
    Rev Neurosci; 2002; 13(1):1-30. PubMed ID: 12013024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular and network mechanisms underlying spontaneous sharp wave-ripple complexes in mouse hippocampal slices.
    Maier N; Nimmrich V; Draguhn A
    J Physiol; 2003 Aug; 550(Pt 3):873-87. PubMed ID: 12807984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A computational study of suppression of sharp wave ripple complexes by controlling calcium and gap junctions in pyramidal cells.
    Mushtaq M; Haq RU; Anwar W; Marshall L; Bazhenov M; Zia K; Alam H; Hertel L; Awan AA; Martinetz T
    Bioengineered; 2021 Dec; 12(1):2603-2615. PubMed ID: 34115572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High frequency stimulation of afferent fibers generates asynchronous firing in the downstream neurons in hippocampus through partial block of axonal conduction.
    Feng Z; Wang Z; Guo Z; Zhou W; Cai Z; Durand DM
    Brain Res; 2017 Apr; 1661():67-78. PubMed ID: 28213155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracellular activities related to in vitro hippocampal sharp waves are altered in CA3 pyramidal neurons of aged mice.
    Moradi-Chameh H; Peng J; Wu C; Zhang L
    Neuroscience; 2014 Sep; 277():474-85. PubMed ID: 25088916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excitation and inhibition compete to control spiking during hippocampal ripples: intracellular study in behaving mice.
    English DF; Peyrache A; Stark E; Roux L; Vallentin D; Long MA; Buzsáki G
    J Neurosci; 2014 Dec; 34(49):16509-17. PubMed ID: 25471587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extracellular waveforms reveal an axonal origin of spikelets in pyramidal neurons.
    Michalikova M; Remme MWH; Kempter R
    J Neurophysiol; 2018 Oct; 120(4):1484-1495. PubMed ID: 29947587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.