BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 22697427)

  • 1. Controllable synthesis of ZnxCd1-xS@ZnO core-shell nanorods with enhanced photocatalytic activity.
    Xie S; Lu X; Zhai T; Gan J; Li W; Xu M; Yu M; Zhang YM; Tong Y
    Langmuir; 2012 Jul; 28(28):10558-64. PubMed ID: 22697427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Composition-tuned ZnO/Zn(x)Cd(1-x)Te core/shell nanowires array with broad spectral absorption from UV to NIR for hydrogen generation.
    Zhan X; Wang Q; Wang F; Wang Y; Wang Z; Cao J; Safdar M; He J
    ACS Appl Mater Interfaces; 2014 Feb; 6(4):2878-83. PubMed ID: 24467167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile synthesis and photocatalytic properties of ZnO core/ZnS-CdS solid solution shell nanorods grown vertically on reductive graphene oxide.
    Xu J; Sang H; Wang X; Wang K
    Dalton Trans; 2015 May; 44(20):9528-37. PubMed ID: 25919032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Band gap engineering of ZnO using core/shell morphology with environmentally benign Ag₂S sensitizer for efficient light harvesting and enhanced visible-light photocatalysis.
    Khanchandani S; Srivastava PK; Kumar S; Ghosh S; Ganguli AK
    Inorg Chem; 2014 Sep; 53(17):8902-12. PubMed ID: 25144692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced photocatalytic activity of quantum-dot-sensitized one-dimensionally-ordered ZnO nanorod photocatalyst.
    Huang J; Liu S; Kuang L; Zhao Y; Jiang T; Liu S; Xu X
    J Environ Sci (China); 2013 Dec; 25(12):2487-91. PubMed ID: 24649681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile synthesis of ZnO nanorod arrays and hierarchical nanostructures for photocatalysis and gas sensor applications.
    Ma S; Li R; Lv C; Xu W; Gou X
    J Hazard Mater; 2011 Aug; 192(2):730-40. PubMed ID: 21684076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Luminescence enhancement of ZnO-core/a-SiN(x):H-shell nanorod arrays.
    Huang R; Xu S; Guo Y; Guo W; Wang X; Song C; Song J; Wang L; Ho KM; Wang N
    Opt Express; 2013 Mar; 21(5):5891-6. PubMed ID: 23482157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-step formation of core-shell sulfide-oxide nanorod arrays from a single precursor.
    Lin YF; Hsu YJ; Lu SY; Chiang WS
    Nanotechnology; 2006 Sep; 17(18):4773-82. PubMed ID: 21727611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ZnO nanorod/CdS nanocrystal core/shell-type heterostructures for solar cell applications.
    Guerguerian G; Elhordoy F; Pereyra CJ; Marotti RE; Martín F; Leinen D; Ramos-Barrado JR; Dalchiele EA
    Nanotechnology; 2011 Dec; 22(50):505401. PubMed ID: 22108174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Room-temperature synthesis of Zn(0.80)Cd(0.20)S solid solution with a high visible-light photocatalytic activity for hydrogen evolution.
    Wang DH; Wang L; Xu AW
    Nanoscale; 2012 Mar; 4(6):2046-53. PubMed ID: 22327298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cost-effective and eco-friendly synthesis of novel and stable N-doped ZnO/g-C3N4 core-shell nanoplates with excellent visible-light responsive photocatalysis.
    Kumar S; Baruah A; Tonda S; Kumar B; Shanker V; Sreedhar B
    Nanoscale; 2014 May; 6(9):4830-42. PubMed ID: 24664127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-dimensional CdS/ZnO core/shell nanofibers via single-spinneret electrospinning: tunable morphology and efficient photocatalytic hydrogen production.
    Yang G; Yan W; Zhang Q; Shen S; Ding S
    Nanoscale; 2013 Dec; 5(24):12432-9. PubMed ID: 24166349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A plasma sputtering decoration route to producing thickness-tunable ZnO/TiO(2) core/shell nanorod arrays.
    Wang M; Huang C; Cao Y; Yu Q; Guo W; Liu Q; Liang J; Hong M
    Nanotechnology; 2009 Jul; 20(28):285311. PubMed ID: 19546501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-step direct fabrication of luminescent Cu-doped Zn(x)Cd(1-x)S quantum dot thin films via a molecular precursor solution approach and their application in luminescent, transparent, and conductive thin films.
    Chen Y; Li S; Huang L; Pan D
    Nanoscale; 2014 Aug; 6(16):9640-5. PubMed ID: 24990584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile synthesis of ZnO/CuInS2 nanorod arrays for photocatalytic pollutants degradation.
    Yang Y; Que W; Zhang X; Xing Y; Yin X; Du Y
    J Hazard Mater; 2016 Nov; 317():430-439. PubMed ID: 27322900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mesoporous ZnO nanorods array with a controllable area density for enhanced photocatalytic properties.
    Tian S; Liu Q; Sun J; Zhu M; Wu S; Zhao X
    J Colloid Interface Sci; 2019 Jan; 534():389-398. PubMed ID: 30243180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shell Layer Thickness-Dependent Photocatalytic Activity of Sputtering Synthesized Hexagonally Structured ZnO-ZnS Composite Nanorods.
    Liang YC; Lo YR; Wang CC; Xu NC
    Materials (Basel); 2018 Jan; 11(1):. PubMed ID: 29316671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of BiFeO3/ZnO core-shell hetero-structures using ZnO nanorod positive templates.
    Chen SW; Lee CC; Chen MT; Wu JM
    Nanotechnology; 2011 Mar; 22(11):115605. PubMed ID: 21301079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile green in situ synthesis of Mg/CuO core/shell nanoenergetic arrays with a superior heat-release property and long-term storage stability.
    Zhou X; Xu D; Zhang Q; Lu J; Zhang K
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7641-6. PubMed ID: 23869818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Doping effects of Co(2+) ions on ZnO nanorods and their photocatalytic properties.
    Qiu X; Li G; Sun X; Li L; Fu X
    Nanotechnology; 2008 May; 19(21):215703. PubMed ID: 21730582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.