These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 22697427)

  • 21. The Zn Vacancy-Mediated De-Accumulation Based Process for Hydrogen Production Performance Promotion of 1D Zn─Cd─S Nanorods.
    Wang S; Cheng Y; Huang W; Dou M; Shao H; Yao M; Ding K; Ye T; Zhou R; Li S; Chen Y
    Small; 2024 Jun; 20(24):e2306447. PubMed ID: 38152988
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Facile synthesis of high-quality water-soluble N-acetyl-L-cysteine-capped Zn(1-x)Cd(x)Se/ZnS core/shell quantum dots emitting in the violet-green spectral range.
    Cao J; Xue B; Li H; Deng D; Gu Y
    J Colloid Interface Sci; 2010 Aug; 348(2):369-76. PubMed ID: 20580762
    [TBL] [Abstract][Full Text] [Related]  

  • 23. ZnO/ZnS heterostructured nanorod arrays and their efficient photocatalytic hydrogen evolution.
    Bao D; Gao P; Zhu X; Sun S; Wang Y; Li X; Chen Y; Zhou H; Wang Y; Yang P
    Chemistry; 2015 Sep; 21(36):12728-34. PubMed ID: 26189562
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Core-shell TiO2@ZnO nanorods for efficient ultraviolet photodetection.
    Panigrahi S; Basak D
    Nanoscale; 2011 May; 3(5):2336-41. PubMed ID: 21483939
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recyclable SERS substrates based on Au-coated ZnO nanorods.
    Sinha G; Depero LE; Alessandri I
    ACS Appl Mater Interfaces; 2011 Jul; 3(7):2557-63. PubMed ID: 21634790
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced photocatalytic hydrogen-production performance of graphene-Zn(x)Cd(1-x)S composites by using an organic S source.
    Li Q; Meng H; Yu J; Xiao W; Zheng Y; Wang J
    Chemistry; 2014 Jan; 20(4):1176-85. PubMed ID: 24425678
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis and photocatalysis of hierarchical heteroassemblies of ZnO branched nanorod arrays on Ag core nanowires.
    Wang S; Yu Y; Zuo Y; Li C; Yang J; Lu C
    Nanoscale; 2012 Sep; 4(19):5895-901. PubMed ID: 22797532
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Construction of Zn
    Zhang C; Wang W; Zhao M; Zhang J; Zha Z; Cheng S; Zheng H; Qian H
    J Colloid Interface Sci; 2019 Jun; 546():303-311. PubMed ID: 30927594
    [TBL] [Abstract][Full Text] [Related]  

  • 29. TiO2 nanorod arrays functionalized with In2S3 shell layer by a low-cost route for solar energy conversion.
    Gan X; Li X; Gao X; Qiu J; Zhuge F
    Nanotechnology; 2011 Jul; 22(30):305601. PubMed ID: 21697580
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Facile synthesis and enhanced visible-light photocatalytic activity of Ag₂S nanocrystal-sensitized Ag₈W₄O₁₆ nanorods.
    Wang X; Zhan S; Wang Y; Wang P; Yu H; Yu J; Hu C
    J Colloid Interface Sci; 2014 May; 422():30-7. PubMed ID: 24655825
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Controllable synthesis and photoluminescence properties of ZnO nanorod and nanopin arrays.
    Yin S; Chen Y; Su Y; Jia C; Zhou Q; Li S; Xin M; Kong W; Zhang X; Lü Y
    J Nanosci Nanotechnol; 2008 Feb; 8(2):993-6. PubMed ID: 18464439
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Graphene nanomesh by ZnO nanorod photocatalysts.
    Akhavan O
    ACS Nano; 2010 Jul; 4(7):4174-80. PubMed ID: 20550104
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fe3O4/WO3 hierarchical core-shell structure: high-performance and recyclable visible-light photocatalysis.
    Xi G; Yue B; Cao J; Ye J
    Chemistry; 2011 Apr; 17(18):5145-54. PubMed ID: 21432916
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative study of photocatalytic activities of hydrothermally grown ZnO nanorod on Si(001) wafer and FTO glass substrates.
    Jeon EH; Yang S; Kim Y; Kim N; Shin HJ; Baik J; Kim HS; Lee H
    Nanoscale Res Lett; 2015 Dec; 10(1):361. PubMed ID: 26377214
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hybrid density functional study of band alignment in ZnO-GaN and ZnO-(Ga(1-x)Zn(x))(N(1-x)O(x))-GaN heterostructures.
    Wang Z; Zhao M; Wang X; Xi Y; He X; Liu X; Yan S
    Phys Chem Chem Phys; 2012 Dec; 14(45):15693-8. PubMed ID: 23086201
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gold nanoparticles modified ZnO nanorods with improved photocatalytic activity.
    Sun L; Zhao D; Song Z; Shan C; Zhang Z; Li B; Shen D
    J Colloid Interface Sci; 2011 Nov; 363(1):175-81. PubMed ID: 21816407
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photocatalytic Performance of 3D Ni/Graphene/ZnO Composites Fabricated by Hydrothermal Processing.
    Xie H; Gu Y; Mu H
    J Nanosci Nanotechnol; 2018 Jul; 18(7):4822-4833. PubMed ID: 29442662
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis and photocatalytic activity of Zn2GeO4 nanorods for the degradation of organic pollutants in water.
    Huang J; Ding K; Hou Y; Wang X; Fu X
    ChemSusChem; 2008; 1(12):1011-9. PubMed ID: 19053134
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Selective oxygen-plasma-etching technique for the formation of ZnO-FTO heterostructure nanotubes and their rectified photocatalytic properties.
    Chantarat N; Chen YW; Lin CC; Chiang MC; Chen SY
    Inorg Chem; 2010 Dec; 49(23):11077-83. PubMed ID: 21067176
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultraintense short-wavelength emission from ZnO-sheathed MgO nanorods induced by subwavelength optical resonance cavity formation: verification of previous hypothesis.
    Jin C; Kim H; Lee C
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1262-6. PubMed ID: 22311676
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.