BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 22697787)

  • 1. Fundamental reaction pathway and free energy profile for inhibition of proteasome by Epoxomicin.
    Wei D; Lei B; Tang M; Zhan CG
    J Am Chem Soc; 2012 Jun; 134(25):10436-50. PubMed ID: 22697787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fundamental reaction pathway and free energy profile of proteasome inhibition by syringolin A (SylA).
    Wei D; Tang M; Zhan CG
    Org Biomol Chem; 2015 Jun; 13(24):6857-65. PubMed ID: 26018983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fundamental reaction pathway for peptide metabolism by proteasome: insights from first-principles quantum mechanical/molecular mechanical free energy calculations.
    Wei D; Fang L; Tang M; Zhan CG
    J Phys Chem B; 2013 Oct; 117(43):13418-34. PubMed ID: 24111489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fundamental reaction mechanism and free energy profile for (-)-cocaine hydrolysis catalyzed by cocaine esterase.
    Liu J; Hamza A; Zhan CG
    J Am Chem Soc; 2009 Aug; 131(33):11964-75. PubMed ID: 19642701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fundamental reaction pathway and free energy profile for butyrylcholinesterase-catalyzed hydrolysis of heroin.
    Qiao Y; Han K; Zhan CG
    Biochemistry; 2013 Sep; 52(37):6467-79. PubMed ID: 23992153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New insights into the mechanism of the Schiff base hydrolysis catalyzed by type I dehydroquinate dehydratase from S. enterica: a theoretical study.
    Yao Y; Li ZS
    Org Biomol Chem; 2012 Sep; 10(35):7037-44. PubMed ID: 22847490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic Mechanisms for Cofactor-Free Oxidase-Catalyzed Reactions: Reaction Pathways of Uricase-Catalyzed Oxidation and Hydration of Uric Acid.
    Wei D; Huang X; Qiao Y; Rao J; Wang L; Liao F; Zhan CG
    ACS Catal; 2017 Jul; 7(7):4623-4636. PubMed ID: 28890842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the anticancer mechanism of prospective herbal drug Withaferin A on mammals: a case study on human and bovine proteasomes.
    Grover A; Shandilya A; Bisaria VS; Sundar D
    BMC Genomics; 2010 Dec; 11 Suppl 4(Suppl 4):S15. PubMed ID: 21143798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reaction pathway and free energy profile for papain-catalyzed hydrolysis of N-acetyl-Phe-Gly 4-nitroanilide.
    Wei D; Huang X; Liu J; Tang M; Zhan CG
    Biochemistry; 2013 Jul; 52(30):5145-54. PubMed ID: 23862626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical perspectives on the reaction mechanism of serine proteases: the reaction free energy profiles of the acylation process.
    Ishida T; Kato S
    J Am Chem Soc; 2003 Oct; 125(39):12035-48. PubMed ID: 14505425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reaction Pathway and Free Energy Profile for Cocaine Hydrolase-Catalyzed Hydrolysis of (-)-Cocaine.
    Liu J; Zhan CG
    J Chem Theory Comput; 2012 Apr; 8(4):1426-1435. PubMed ID: 23066354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical study of the inhibition mechanism of human 20S proteasome by dihydroeponemycin.
    Serrano-Aparicio N; Świderek K; Moliner V
    Eur J Med Chem; 2019 Feb; 164():399-407. PubMed ID: 30611981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of the hydration of carbon dioxide: direct participation of H2O versus microsolvation.
    Nguyen MT; Matus MH; Jackson VE; Vu TN; Rustad JR; Dixon DA
    J Phys Chem A; 2008 Oct; 112(41):10386-98. PubMed ID: 18816037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reaction pathway and free-energy barrier for reactivation of dimethylphosphoryl-inhibited human acetylcholinesterase.
    Liu J; Zhang Y; Zhan CG
    J Phys Chem B; 2009 Dec; 113(50):16226-36. PubMed ID: 19924840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reaction pathway and free energy profile for butyrylcholinesterase-catalyzed hydrolysis of acetylcholine.
    Chen X; Fang L; Liu J; Zhan CG
    J Phys Chem B; 2011 Feb; 115(5):1315-22. PubMed ID: 21175195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulations of the catalytic pathway of a cysteine protease: a combined QM/MM study of human cathepsin K.
    Ma S; Devi-Kesavan LS; Gao J
    J Am Chem Soc; 2007 Nov; 129(44):13633-45. PubMed ID: 17935329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computer simulation of the chemical catalysis of DNA polymerases: discriminating between alternative nucleotide insertion mechanisms for T7 DNA polymerase.
    Florián J; Goodman MF; Warshel A
    J Am Chem Soc; 2003 Jul; 125(27):8163-77. PubMed ID: 12837086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of active site ionization equilibria in the 670 kDa proteasome core particle using methyl-TROSY NMR.
    Velyvis A; Kay LE
    J Am Chem Soc; 2013 Jun; 135(25):9259-62. PubMed ID: 23800213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dinuclear Zn(II) complex catalyzed phosphodiester cleavage proceeds via a concerted mechanism: a density functional theory study.
    Gao H; Ke Z; DeYonker NJ; Wang J; Xu H; Mao ZW; Phillips DL; Zhao C
    J Am Chem Soc; 2011 Mar; 133(9):2904-15. PubMed ID: 21319769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of a Criegee intermediate in the low-temperature oxidation of dimethyl sulfoxide.
    Asatryan R; Bozzelli JW
    Phys Chem Chem Phys; 2008 Apr; 10(13):1769-80. PubMed ID: 18350182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.