BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 22698077)

  • 21. Genomics, Proteomics and Metabolomics Approaches for Predicting Diabetic Nephropathy in Type 2 Diabetes Mellitus Patients.
    Darmayanti S; Lesmana R; Meiliana A; Abdulah R
    Curr Diabetes Rev; 2021; 17(6):e123120189796. PubMed ID: 33393899
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of Smad1 in diabetic nephropathy: Molecular mechanisms and implications as a diagnostic marker.
    Abe H; Matsubara T; Arai H; Doi T
    Histol Histopathol; 2011 Apr; 26(4):531-41. PubMed ID: 21360446
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Soluble Urokinase Receptor and the Kidney Response in Diabetes Mellitus.
    Dande RR; Peev V; Altintas MM; Reiser J
    J Diabetes Res; 2017; 2017():3232848. PubMed ID: 28596971
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hyperoside reduces albuminuria in diabetic nephropathy at the early stage through ameliorating renal damage and podocyte injury.
    Zhang J; Fu H; Xu Y; Niu Y; An X
    J Nat Med; 2016 Oct; 70(4):740-8. PubMed ID: 27255369
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Insights into predicting diabetic nephropathy using urinary biomarkers.
    Khan NU; Lin J; Liu X; Li H; Lu W; Zhong Z; Zhang H; Waqas M; Shen L
    Biochim Biophys Acta Proteins Proteom; 2020 Oct; 1868(10):140475. PubMed ID: 32574766
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Utility of urinary biomarkers as a diagnostic tool for early diabetic nephropathy in patients with type 2 diabetes mellitus.
    Vijay S; Hamide A; Senthilkumar GP; Mehalingam V
    Diabetes Metab Syndr; 2018 Sep; 12(5):649-652. PubMed ID: 29673928
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thioredoxin-Interacting Protein Deficiency Protects against Diabetic Nephropathy.
    Shah A; Xia L; Masson EA; Gui C; Momen A; Shikatani EA; Husain M; Quaggin S; John R; Fantus IG
    J Am Soc Nephrol; 2015 Dec; 26(12):2963-77. PubMed ID: 25855771
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Recent progress in understanding the molecular pathogenesis of diabetic nephropathy].
    Abe H
    Rinsho Byori; 2011 Feb; 59(2):179-86. PubMed ID: 21476304
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Podocyte-specific chemokine (C-C motif) receptor 2 overexpression mediates diabetic renal injury in mice.
    You H; Gao T; Raup-Konsavage WM; Cooper TK; Bronson SK; Reeves WB; Awad AS
    Kidney Int; 2017 Mar; 91(3):671-682. PubMed ID: 27914709
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adiponectin for the treatment of diabetic nephropathy.
    Lee JY; Yang JW; Han BG; Choi SO; Kim JS
    Korean J Intern Med; 2019 May; 34(3):480-491. PubMed ID: 31048658
    [TBL] [Abstract][Full Text] [Related]  

  • 31. New insights into the use of biomarkers of diabetic nephropathy.
    Jha JC; Jandeleit-Dahm KA; Cooper ME
    Adv Chronic Kidney Dis; 2014 May; 21(3):318-26. PubMed ID: 24780461
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of angiotensin receptor blocker on phenotypic alterations of podocytes in early diabetic nephropathy.
    Dai HY; Zheng M; Tang RN; Ni J; Ma KL; Li Q; Liu BC
    Am J Med Sci; 2011 Mar; 341(3):207-14. PubMed ID: 21326079
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibition of the epidermal growth factor receptor preserves podocytes and attenuates albuminuria in experimental diabetic nephropathy.
    Advani A; Wiggins KJ; Cox AJ; Zhang Y; Gilbert RE; Kelly DJ
    Nephrology (Carlton); 2011 Aug; 16(6):573-81. PubMed ID: 21342330
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Podocyte-specific Nox4 deletion affords renoprotection in a mouse model of diabetic nephropathy.
    Jha JC; Thallas-Bonke V; Banal C; Gray SP; Chow BS; Ramm G; Quaggin SE; Cooper ME; Schmidt HH; Jandeleit-Dahm KA
    Diabetologia; 2016 Feb; 59(2):379-89. PubMed ID: 26508318
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [The effects of VEGF-R inhibitor on podocytopathy of rats with type I diabetic nephropathy].
    Wang S; Li Y; Huang YJ
    Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi; 2011 Sep; 27(9):1003-6. PubMed ID: 21906476
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Non-genetic mechanisms of diabetic nephropathy.
    Han Q; Zhu H; Chen X; Liu Z
    Front Med; 2017 Sep; 11(3):319-332. PubMed ID: 28871454
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Urinary small extracellular vesicles derived CCL21 mRNA as biomarker linked with pathogenesis for diabetic nephropathy.
    Feng Y; Zhong X; Ni HF; Wang C; Tang TT; Wang LT; Song KY; Tang RN; Liu H; Liu BC; Lv LL
    J Transl Med; 2021 Aug; 19(1):355. PubMed ID: 34404433
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of urinary soluble E-cadherin as a novel biomarker for diabetic nephropathy.
    Jiang H; Guan G; Zhang R; Liu G; Cheng J; Hou X; Cui Y
    Diabetes Metab Res Rev; 2009 Mar; 25(3):232-41. PubMed ID: 19177462
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Urinary Proteomics for Diagnosis and Monitoring of Diabetic Nephropathy.
    Currie G; Delles C
    Curr Diab Rep; 2016 Nov; 16(11):104. PubMed ID: 27658932
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessment of urinary osteopontin in association with podocyte for early predication of nephropathy in diabetic patients.
    Al-Malki AL
    Dis Markers; 2014; 2014():493736. PubMed ID: 24876663
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.