These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 22698374)

  • 1. Evaluation of effects of exposure time on aquatic toxicity with zooplanktons using a reduced life expectancy model.
    Verma V; Yu QJ; Connell DW
    Chemosphere; 2012 Nov; 89(9):1026-33. PubMed ID: 22698374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of exposure time and life expectancy in models for toxicity to aquatic organisms.
    Connell D; Yu J
    Mar Pollut Bull; 2008; 57(6-12):245-9. PubMed ID: 18471833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of exposure time on toxicity-An overview.
    Connell DW; Yu QJ; Verma V
    Toxicology; 2016 Apr; 355-356():49-53. PubMed ID: 27216426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methods for deriving pesticide aquatic life criteria.
    TenBrook PL; Tjeerdema RS; Hann P; Karkoski J
    Rev Environ Contam Toxicol; 2009; 199():19-109. PubMed ID: 19110939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of effects of long term exposure on lethal toxicity with mammals.
    Verma V; Yu QJ; Connell DW
    Environ Pollut; 2014 Feb; 185():234-9. PubMed ID: 24291612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of Reduced Life Expectancy (RLE) model with Haber's Rule to describe effects of exposure time on toxicity.
    Verma V; Yu QJ; Connell DW
    Environ Pollut; 2015 Sep; 204():26-31. PubMed ID: 25898234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acute toxicity value extrapolation with fish and aquatic invertebrates.
    Buckler DR; Mayer FL; Ellersieck MR; Asfaw A
    Arch Environ Contam Toxicol; 2005 Nov; 49(4):546-58. PubMed ID: 16205993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduced life expectancy model for effects of long term exposure on lethal toxicity with fish.
    Verma V; Yu QJ; Connell DW
    ISRN Toxicol; 2013 Dec; 2013():230763. PubMed ID: 24455314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A dose-based modeling approach for accumulation and toxicity of arsenic in tilapia Oreochromis mossambicus.
    Tsai JW; Liao CM
    Environ Toxicol; 2006 Feb; 21(1):8-21. PubMed ID: 16463258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel passive dosing system for determining the toxicity of phenanthrene to early life stages of zebrafish.
    Butler JD; Parkerton TF; Letinski DJ; Bragin GE; Lampi MA; Cooper KR
    Sci Total Environ; 2013 Oct; 463-464():952-8. PubMed ID: 23872248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparing aquatic risk assessment methods for the photosynthesis-inhibiting herbicides metribuzin and metamitron.
    Brock TC; Crum SJ; Deneer JW; Heimbach F; Roijackers RM; Sinkeldam JA
    Environ Pollut; 2004 Aug; 130(3):403-26. PubMed ID: 15182972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NTP carcinogenesis studies of 2,2-bis(bromomethyl)-1,3-propanediol, nitromethane, and 1,2,3-trichloropropane (cas nos. 3296-90-0, 75-52-5, and 96-18-4) in guppies (Poecilia reticulata) and medaka (Oryzias latipes) (Waterborne Studies).
    National Toxicology Program
    Natl Toxicol Program Tech Rep Ser; 2005 Oct; (528):1-190. PubMed ID: 16362062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sublethal and lethal toxicity in juvenile Senegal sole (Solea senegalensis) exposed to copper: a preliminary toxicity range-finding test.
    Oliva M; Garrido MC; Sales Márquez D; González de Canales ML
    Exp Toxicol Pathol; 2009 Mar; 61(2):113-21. PubMed ID: 18639447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incorporating exposure into aquatic toxicological studies: an imperative.
    Wang WX
    Aquat Toxicol; 2011 Oct; 105(3-4 Suppl):9-15. PubMed ID: 22099340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of flow-through and renewal exposures on the toxicity of copper to rainbow trout.
    Welsh PG; Lipton J; Mebane CA; Marr JC
    Ecotoxicol Environ Saf; 2008 Feb; 69(2):199-208. PubMed ID: 17517436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative read-across for predicting the acute fish toxicity of organic compounds.
    Schüürmann G; Ebert RU; Kühne R
    Environ Sci Technol; 2011 May; 45(10):4616-22. PubMed ID: 21491860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of the biotic ligand model to predict pulse-exposure toxicity of copper to fathead minnows (Pimephales promelas).
    Meyer JS; Boese CJ; Morris JM
    Aquat Toxicol; 2007 Aug; 84(2):268-78. PubMed ID: 17659358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A bioavailability model predicting the toxicity of nickel to rainbow trout (Oncorhynchus mykiss) and fathead minnow (Pimephales promelas) in synthetic and natural waters.
    Deleebeeck NM; De Schamphelaere KA; Janssen CR
    Ecotoxicol Environ Saf; 2007 May; 67(1):1-13. PubMed ID: 17174394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional regulation in liver and testis associated with developmental and reproductive effects in male zebrafish exposed to natural mixtures of persistent organic pollutants (POP).
    Nourizadeh-Lillabadi R; Lyche JL; Almaas C; Stavik B; Moe SJ; Aleksandersen M; Berg V; Jakobsen KS; Stenseth NC; Skåre JU; Alestrøm P; Ropstad E
    J Toxicol Environ Health A; 2009; 72(3-4):112-30. PubMed ID: 19184727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.