These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
43. Effects of chitosan/collagen substrates on the behavior of rat neural stem cells. Yang Z; Mo L; Duan H; Li X Sci China Life Sci; 2010 Feb; 53(2):215-22. PubMed ID: 20596830 [TBL] [Abstract][Full Text] [Related]
44. Brain injury activates microglia that induce neural stem cell proliferation ex vivo and promote differentiation of neurosphere-derived cells into neurons and oligodendrocytes. Deierborg T; Roybon L; Inacio AR; Pesic J; Brundin P Neuroscience; 2010 Dec; 171(4):1386-96. PubMed ID: 20883748 [TBL] [Abstract][Full Text] [Related]
45. Transplanted adult neural progenitor cells survive, differentiate and reduce motor function impairment in a rodent model of Huntington's disease. Vazey EM; Chen K; Hughes SM; Connor B Exp Neurol; 2006 Jun; 199(2):384-96. PubMed ID: 16626705 [TBL] [Abstract][Full Text] [Related]
46. PARP inhibition improves the effectiveness of neural stem cell transplantation in experimental brain trauma. Lacza Z; Horváth EM; Komjáti K; Hortobágyi T; Szabó C; Busija DW Int J Mol Med; 2003 Aug; 12(2):153-9. PubMed ID: 12851710 [TBL] [Abstract][Full Text] [Related]
47. Human neural stem cells improve sensorimotor deficits in the adult rat brain with experimental focal ischemia. Chu K; Kim M; Park KI; Jeong SW; Park HK; Jung KH; Lee ST; Kang L; Lee K; Park DK; Kim SU; Roh JK Brain Res; 2004 Aug; 1016(2):145-53. PubMed ID: 15246850 [TBL] [Abstract][Full Text] [Related]
48. Differentiation of endogenous progenitors in an animal model of post-traumatic syringomyelia. Tu J; Liao J; Stoodley MA; Cunningham AM Spine (Phila Pa 1976); 2010 May; 35(11):1116-21. PubMed ID: 20421862 [TBL] [Abstract][Full Text] [Related]
49. Transplantation of neural stem cells expressing hypoxia-inducible factor-1alpha (HIF-1alpha) improves behavioral recovery in a rat stroke model. Wu W; Chen X; Hu C; Li J; Yu Z; Cai W J Clin Neurosci; 2010 Jan; 17(1):92-5. PubMed ID: 19913430 [TBL] [Abstract][Full Text] [Related]
50. Transplantation of human mesenchymal stem cells loaded on collagen scaffolds for the treatment of traumatic brain injury in rats. Guan J; Zhu Z; Zhao RC; Xiao Z; Wu C; Han Q; Chen L; Tong W; Zhang J; Han Q; Gao J; Feng M; Bao X; Dai J; Wang R Biomaterials; 2013 Aug; 34(24):5937-46. PubMed ID: 23664090 [TBL] [Abstract][Full Text] [Related]
51. Brain and spinal cord injury repair by implantation of human neural progenitor cells seeded onto polymer scaffolds. Shin JE; Jung K; Kim M; Hwang K; Lee H; Kim IS; Lee BH; Lee IS; Park KI Exp Mol Med; 2018 Apr; 50(4):1-18. PubMed ID: 29674624 [TBL] [Abstract][Full Text] [Related]
52. Long-term benefit of human fetal neuronal progenitor cell transplantation in a clinically adapted model after traumatic brain injury. Skardelly M; Gaber K; Burdack S; Scheidt F; Hilbig H; Boltze J; Förschler A; Schwarz S; Schwarz J; Meixensberger J; Schuhmann MU J Neurotrauma; 2011 Mar; 28(3):401-14. PubMed ID: 21083415 [TBL] [Abstract][Full Text] [Related]
53. Trauma-associated inflammatory response impairs embryonic stem cell survival and integration after implantation into injured rat brain. Molcanyi M; Riess P; Bentz K; Maegele M; Hescheler J; Schäfke B; Trapp T; Neugebauer E; Klug N; Schäfer U J Neurotrauma; 2007 Apr; 24(4):625-37. PubMed ID: 17439346 [TBL] [Abstract][Full Text] [Related]
54. Optimizing a multifunctional microsphere scaffold to improve neural precursor cell transplantation for traumatic brain injury repair. Skop NB; Calderon F; Cho CH; Gandhi CD; Levison SW J Tissue Eng Regen Med; 2016 Oct; 10(10):E419-E432. PubMed ID: 27730762 [TBL] [Abstract][Full Text] [Related]
55. The use of bioactive matrices in regenerative therapies for traumatic brain injury. Tan HX; Borgo MPD; Aguilar MI; Forsythe JS; Taylor JM; Crack PJ Acta Biomater; 2020 Jan; 102():1-12. PubMed ID: 31751809 [TBL] [Abstract][Full Text] [Related]
56. Transplantation of human meningioma stem cells loaded on a self-assembling peptide nanoscaffold containing IKVAV improves traumatic brain injury in rats. Sahab Negah S; Oliazadeh P; Jahanbazi Jahan-Abad A; Eshaghabadi A; Samini F; Ghasemi S; Asghari A; Gorji A Acta Biomater; 2019 Jul; 92():132-144. PubMed ID: 31075516 [TBL] [Abstract][Full Text] [Related]
57. Transplantable living scaffolds comprised of micro-tissue engineered aligned astrocyte networks to facilitate central nervous system regeneration. Winter CC; Katiyar KS; Hernandez NS; Song YJ; Struzyna LA; Harris JP; Cullen DK Acta Biomater; 2016 Jul; 38():44-58. PubMed ID: 27090594 [TBL] [Abstract][Full Text] [Related]
58. Micropatterned bioimplant with guided neuronal cells to promote tissue reconstruction and improve functional recovery after primary motor cortex insult. Vaysse L; Beduer A; Sol JC; Vieu C; Loubinoux I Biomaterials; 2015 Jul; 58():46-53. PubMed ID: 25941781 [TBL] [Abstract][Full Text] [Related]
59. Implanted neurosphere-derived precursors promote recovery after neonatal excitotoxic brain injury. Titomanlio L; Bouslama M; Le Verche V; Dalous J; Kaindl AM; Tsenkina Y; Lacaud A; Peineau S; El Ghouzzi V; Lelièvre V; Gressens P Stem Cells Dev; 2011 May; 20(5):865-79. PubMed ID: 20964621 [TBL] [Abstract][Full Text] [Related]
60. Experimental and clinical factors influencing long-term stable in vitro expansion of multipotent neural cells from human adult temporal lobes. Joo KM; Kang BG; Yeon JY; Cho YJ; An JY; Song HS; Won JH; Kim SJ; Hong SC; Nam DH Exp Neurol; 2013 Feb; 240():168-77. PubMed ID: 23201097 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]