These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 22698665)

  • 61. Human amnion-derived multipotent progenitor cell treatment alleviates traumatic brain injury-induced axonal degeneration.
    Chen Z; Tortella FC; Dave JR; Marshall VS; Clarke DL; Sing G; Du F; Lu XC
    J Neurotrauma; 2009 Nov; 26(11):1987-97. PubMed ID: 19886807
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Cell-based therapy for traumatic brain injury.
    Gennai S; Monsel A; Hao Q; Liu J; Gudapati V; Barbier EL; Lee JW
    Br J Anaesth; 2015 Aug; 115(2):203-12. PubMed ID: 26170348
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Neural stem cell transplantation in an animal model of traumatic brain injury.
    Thomaidou D
    Methods Mol Biol; 2014; 1210():9-21. PubMed ID: 25173157
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Transplantation of neural stem cells into the traumatized brain induces lymphocyte infiltration.
    Zheng XS; Yang XF; Liu WG; Pan DS; Hu WW; Li G
    Brain Inj; 2007 Mar; 21(3):275-8. PubMed ID: 17453755
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Stem cell therapy for neonatal brain injury.
    Fleiss B; Guillot PV; Titomanlio L; Baud O; Hagberg H; Gressens P
    Clin Perinatol; 2014 Mar; 41(1):133-48. PubMed ID: 24524451
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Gelatinized copper-capillary alginate gel functions as an injectable tissue scaffolding system for stem cell transplants.
    Willenberg BJ; Zheng T; Meng FW; Meneses JC; Rossignol C; Batich CD; Terada N; Steindler DA; Weiss MD
    J Biomater Sci Polym Ed; 2011; 22(12):1621-37. PubMed ID: 20699061
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Pitfalls and fallacies interfering with correct identification of embryonic stem cells implanted into the brain after experimental traumatic injury.
    Molcanyi M; Bosche B; Kraitsy K; Patz S; Zivcak J; Riess P; El Majdoub F; Hescheler J; Goldbrunner R; Schäfer U
    J Neurosci Methods; 2013 Apr; 215(1):60-70. PubMed ID: 23454685
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Culture and differentiation of rat neural stem/progenitor cells in a three-dimensional collagen scaffold.
    Ge D; Song K; Guan S; Qi Y; Guan B; Li W; Liu J; Ma X; Liu T; Cui Z
    Appl Biochem Biotechnol; 2013 May; 170(2):406-19. PubMed ID: 23536252
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Endogenous and exogenous CNS derived stem/progenitor cell approaches for neurotrauma.
    Kulbatski I; Mothe AJ; Nomura H; Tator CH
    Curr Drug Targets; 2005 Feb; 6(1):111-26. PubMed ID: 15720218
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Neural tissue regeneration in experimental brain injury model with channeled scaffolds of acrylate copolymers.
    Martínez-Ramos C; Gómez-Pinedo U; Esparza MA; Soria JM; Barcia JA; Monleón Pradas M
    Neurosci Lett; 2015 Jun; 598():96-101. PubMed ID: 25980992
    [TBL] [Abstract][Full Text] [Related]  

  • 71. In vivo study on the survival of neural stem cells transplanted into the rat brain with a collagen hydrogel that incorporates laminin-derived polypeptides.
    Nakaji-Hirabayashi T; Kato K; Iwata H
    Bioconjug Chem; 2013 Nov; 24(11):1798-804. PubMed ID: 23991904
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Neurorestorative effect of urinary bladder matrix-mediated neural stem cell transplantation following traumatic brain injury in rats.
    Wang JY; Liou A; Ren ZH; Zhang L; Brown BN; Cui XT; Badylak SF; Cai YN; Guan YQ; Leak RK; Chen J; Ji X; Chen L
    CNS Neurol Disord Drug Targets; 2013 May; 12(3):413-425. PubMed ID: 23469853
    [TBL] [Abstract][Full Text] [Related]  

  • 73. In vivo bioluminescence imaging for prolonged survival of transplanted human neural stem cells using 3D biocompatible scaffold in corticectomized rat model.
    Hwang DW; Jin Y; Lee DH; Kim HY; Cho HN; Chung HJ; Park Y; Youn H; Lee SJ; Lee HJ; Kim SU; Wang KC; Lee DS
    PLoS One; 2014; 9(9):e105129. PubMed ID: 25198726
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Nanoparticle-mediated transcriptional modification enhances neuronal differentiation of human neural stem cells following transplantation in rat brain.
    Li X; Tzeng SY; Liu X; Tammia M; Cheng YH; Rolfe A; Sun D; Zhang N; Green JJ; Wen X; Mao HQ
    Biomaterials; 2016 Apr; 84():157-166. PubMed ID: 26828681
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Adult neural stem cells: response to stroke injury and potential for therapeutic applications.
    Barkho BZ; Zhao X
    Curr Stem Cell Res Ther; 2011 Dec; 6(4):327-38. PubMed ID: 21466483
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Non-invasive imaging of transplanted human neural stem cells and ECM scaffold remodeling in the stroke-damaged rat brain by (19)F- and diffusion-MRI.
    Bible E; Dell'Acqua F; Solanky B; Balducci A; Crapo PM; Badylak SF; Ahrens ET; Modo M
    Biomaterials; 2012 Apr; 33(10):2858-71. PubMed ID: 22244696
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Characterization of a novel rat model of penetrating traumatic brain injury.
    Plantman S; Ng KC; Lu J; Davidsson J; Risling M
    J Neurotrauma; 2012 Apr; 29(6):1219-32. PubMed ID: 22181060
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Self-assembling peptide nanofiber scaffold promotes the reconstruction of acutely injured brain.
    Guo J; Leung KK; Su H; Yuan Q; Wang L; Chu TH; Zhang W; Pu JK; Ng GK; Wong WM; Dai X; Wu W
    Nanomedicine; 2009 Sep; 5(3):345-51. PubMed ID: 19268273
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Neuroprotective effect of mesenchymal and neural stem and progenitor cells on sensorimotor recovery after brain injury.
    Poltavtseva RA; Silachev DN; Pavlovich SV; Kesova MI; Yarygin KN; Lupatov AY; Van'ko LV; Shuvalova MP; Sukhikh GT
    Bull Exp Biol Med; 2012 Aug; 153(4):586-90. PubMed ID: 22977876
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A model of posttraumatic epilepsy after penetrating brain injuries: effect of lesion size and metal fragments.
    Kendirli MT; Rose DT; Bertram EH
    Epilepsia; 2014 Dec; 55(12):1969-77. PubMed ID: 25470332
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.