These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 22698880)
1. Development of classification and regression based QSAR models to predict rodent carcinogenic potency using oral slope factor. Kar S; Deeb O; Roy K Ecotoxicol Environ Saf; 2012 Aug; 82():85-95. PubMed ID: 22698880 [TBL] [Abstract][Full Text] [Related]
2. First report on development of quantitative interspecies structure-carcinogenicity relationship models and exploring discriminatory features for rodent carcinogenicity of diverse organic chemicals using OECD guidelines. Kar S; Roy K Chemosphere; 2012 Apr; 87(4):339-55. PubMed ID: 22225702 [TBL] [Abstract][Full Text] [Related]
3. Development of quantitative structure-activity relationship (QSAR) models to predict the carcinogenic potency of chemicals. II. Using oral slope factor as a measure of carcinogenic potency. Wang NC; Venkatapathy R; Bruce RM; Moudgal C Regul Toxicol Pharmacol; 2011 Mar; 59(2):215-26. PubMed ID: 20951756 [TBL] [Abstract][Full Text] [Related]
4. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling. Valerio LG; Arvidson KB; Chanderbhan RF; Contrera JF Toxicol Appl Pharmacol; 2007 Jul; 222(1):1-16. PubMed ID: 17482223 [TBL] [Abstract][Full Text] [Related]
5. Prediction of hERG Potassium Channel Blocking Actions Using Combination of Classification and Regression Based Models: A Mixed Descriptors Approach. Kar S; Roy K Mol Inform; 2012 Dec; 31(11-12):879-94. PubMed ID: 27476741 [TBL] [Abstract][Full Text] [Related]
6. Predicting the carcinogenic potential of pharmaceuticals in rodents using molecular structural similarity and E-state indices. Contrera JF; Matthews EJ; Daniel Benz R Regul Toxicol Pharmacol; 2003 Dec; 38(3):243-59. PubMed ID: 14623477 [TBL] [Abstract][Full Text] [Related]
7. Prediction of rodent carcinogenicity of aromatic amines: a quantitative structure-activity relationships model. Franke R; Gruska A; Giuliani A; Benigni R Carcinogenesis; 2001 Sep; 22(9):1561-71. PubMed ID: 11532881 [TBL] [Abstract][Full Text] [Related]
8. Quantitative structure-activity relationship modelling of the carcinogenic risk of nitroso compounds using regression analysis and the TOPS-MODE approach. Helguera AM; Pérez-Machado G; Cordeiro MN; Combes RD SAR QSAR Environ Res; 2010 Apr; 21(3-4):277-304. PubMed ID: 20544552 [TBL] [Abstract][Full Text] [Related]
9. Development and validation of a robust QSAR model for prediction of carcinogenicity of drugs. Kar S; Roy K Indian J Biochem Biophys; 2011 Apr; 48(2):111-22. PubMed ID: 21682143 [TBL] [Abstract][Full Text] [Related]
10. In Silico Estimation of Chemical Carcinogenicity with Binary and Ternary Classification Methods. Li X; Du Z; Wang J; Wu Z; Li W; Liu G; Shen X; Tang Y Mol Inform; 2015 Apr; 34(4):228-35. PubMed ID: 27490168 [TBL] [Abstract][Full Text] [Related]
11. Development of quantitative structure-activity relationship (QSAR) models to predict the carcinogenic potency of chemicals I. Alternative toxicity measures as an estimator of carcinogenic potency. Venkatapathy R; Wang CY; Bruce RM; Moudgal C Toxicol Appl Pharmacol; 2009 Jan; 234(2):209-21. PubMed ID: 18977375 [TBL] [Abstract][Full Text] [Related]
12. QSAR Models for Human Carcinogenicity: An Assessment Based on Oral and Inhalation Slope Factors. Toma C; Manganaro A; Raitano G; Marzo M; Gadaleta D; Baderna D; Roncaglioni A; Kramer N; Benfenati E Molecules; 2020 Dec; 26(1):. PubMed ID: 33383938 [TBL] [Abstract][Full Text] [Related]
14. Predicting carcinogenicity and understanding the carcinogenic mechanism of N-nitroso compounds using a TOPS-MODE approach. Yuan J; Pu Y; Yin L Chem Res Toxicol; 2011 Dec; 24(12):2269-79. PubMed ID: 22084901 [TBL] [Abstract][Full Text] [Related]
15. Quantitative structure carcinogenicity relationship for detecting structural alerts in nitroso-compounds. Helguera AM; González MP; D S Cordeiro MN; Pérez MA Toxicol Appl Pharmacol; 2007 Jun; 221(2):189-202. PubMed ID: 17477948 [TBL] [Abstract][Full Text] [Related]
17. Predicting carcinogenicity of diverse chemicals using probabilistic neural network modeling approaches. Singh KP; Gupta S; Rai P Toxicol Appl Pharmacol; 2013 Oct; 272(2):465-75. PubMed ID: 23856075 [TBL] [Abstract][Full Text] [Related]
18. Comparative analysis of predictive models for nongenotoxic hepatocarcinogenicity using both toxicogenomics and quantitative structure-activity relationships. Liu Z; Kelly R; Fang H; Ding D; Tong W Chem Res Toxicol; 2011 Jul; 24(7):1062-70. PubMed ID: 21627106 [TBL] [Abstract][Full Text] [Related]
19. Quantitative structure-carcinogenicity relationship for detecting structural alerts in nitroso compounds: species, rat; sex, female; route of administration, gavage. Morales Helguera A; Pérez González M; Dias Soeiro Cordeiro MN; Cabrera Pérez MA Chem Res Toxicol; 2008 Mar; 21(3):633-42. PubMed ID: 18293904 [TBL] [Abstract][Full Text] [Related]
20. Predicting carcinogenicity of organic compounds based on CPDB. Wu X; Zhang Q; Wang H; Hu J Chemosphere; 2015 Nov; 139():81-90. PubMed ID: 26070146 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]