These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 22698893)
1. How ischaemic region shape affects ST potentials in models of cardiac tissue. Barnes JP; Johnston PR Math Biosci; 2012 Oct; 239(2):213-21. PubMed ID: 22698893 [TBL] [Abstract][Full Text] [Related]
2. The importance of anisotropy in modeling ST segment shift in subendocardial ischaemia. Johnston PR; Kilpatrick D; Li CY IEEE Trans Biomed Eng; 2001 Dec; 48(12):1366-76. PubMed ID: 11759918 [TBL] [Abstract][Full Text] [Related]
3. Sensitivity analysis of ST-segment epicardial potentials arising from changes in ischaemic region conductivities in early and late stage ischaemia. Johnston BM; Johnston PR Comput Biol Med; 2018 Nov; 102():288-299. PubMed ID: 29914695 [TBL] [Abstract][Full Text] [Related]
4. Quantifying the effect of uncertainty in input parameters in a simplified bidomain model of partial thickness ischaemia. Johnston BM; Coveney S; Chang ETY; Johnston PR; Clayton RH Med Biol Eng Comput; 2018 May; 56(5):761-780. PubMed ID: 28933043 [TBL] [Abstract][Full Text] [Related]
5. The effect of conductivity on ST-segment epicardial potentials arising from subendocardial ischemia. Hopenfeld B; Stinstra JG; MacLeod RS Ann Biomed Eng; 2005 Jun; 33(6):751-63. PubMed ID: 16078615 [TBL] [Abstract][Full Text] [Related]
6. A nondimensional formulation of the passive bidomain equation. Johnston PR J Electrocardiol; 2011; 44(2):184-8. PubMed ID: 21255793 [TBL] [Abstract][Full Text] [Related]
7. Simulation of ST segment changes during subendocardial ischemia using a realistic 3-D cardiac geometry. MacLachlan MC; Sundnes J; Lines GT IEEE Trans Biomed Eng; 2005 May; 52(5):799-807. PubMed ID: 15887529 [TBL] [Abstract][Full Text] [Related]
8. Determining the most significant input parameters in models of subendocardial ischaemia and their effect on ST segment epicardial potential distributions. Johnston BM; Johnston PR Comput Biol Med; 2018 Apr; 95():75-89. PubMed ID: 29459293 [TBL] [Abstract][Full Text] [Related]
9. Differences between models of partial thickness and subendocardial ischaemia in terms of sensitivity analyses of ST-segment epicardial potential distributions. Johnston BM; Johnston PR Math Biosci; 2019 Dec; 318():108273. PubMed ID: 31647934 [TBL] [Abstract][Full Text] [Related]
10. The effect of lesion size and tissue remodeling on ST deviation in partial-thickness ischemia. Potse M; Coronel R; Falcao S; LeBlanc AR; Vinet A Heart Rhythm; 2007 Feb; 4(2):200-6. PubMed ID: 17275757 [TBL] [Abstract][Full Text] [Related]
11. The effect of conductivity values on ST segment shift in subendocardial ischaemia. Johnston PR; Kilpatrick D IEEE Trans Biomed Eng; 2003 Feb; 50(2):150-8. PubMed ID: 12665028 [TBL] [Abstract][Full Text] [Related]
12. Mechanism for ST depression associated with contiguous subendocardial ischemia. Hopenfeld B; Stinstra JG; Macleod RS J Cardiovasc Electrophysiol; 2004 Oct; 15(10):1200-6. PubMed ID: 15485448 [TBL] [Abstract][Full Text] [Related]
13. A sensitivity study of conductivity values in the passive bidomain equation. Johnston PR Math Biosci; 2011 Aug; 232(2):142-50. PubMed ID: 21624377 [TBL] [Abstract][Full Text] [Related]
14. Alternating conduction in the ischaemic border zone as precursor of reentrant arrhythmias: a simulation study. Bernus O; Zemlin CW; Zaritsky RM; Mironov SF; Pertsov AM Europace; 2005 Sep; 7 Suppl 2():93-104. PubMed ID: 16102507 [TBL] [Abstract][Full Text] [Related]
15. The effect of simplifying assumptions in the bidomain model of cardiac tissue: application to ST segment shifts during partial ischaemia. Johnston PR Math Biosci; 2005 Nov; 198(1):97-118. PubMed ID: 16061262 [TBL] [Abstract][Full Text] [Related]
16. A finite volume method solution for the bidomain equations and their application to modelling cardiac ischaemia. Johnston PR Comput Methods Biomech Biomed Engin; 2010; 13(2):157-70. PubMed ID: 19639486 [TBL] [Abstract][Full Text] [Related]
17. Dynamical and cellular electrophysiological mechanisms of ECG changes during ischaemia. Aslanidi OV; Clayton RH; Lambert JL; Holden AV J Theor Biol; 2005 Dec; 237(4):369-81. PubMed ID: 15979649 [TBL] [Abstract][Full Text] [Related]
18. A cylindrical model for studying subendocardial ischaemia in the left ventricle. Johnston PR Math Biosci; 2003 Nov; 186(1):43-61. PubMed ID: 14527746 [TBL] [Abstract][Full Text] [Related]
19. Modeling of cardiac ischemia in human myocytes and tissue including spatiotemporal electrophysiological variations. Weiss DL; Ifland M; Sachse FB; Seemann G; Dössel O Biomed Tech (Berl); 2009 Jun; 54(3):107-25. PubMed ID: 19469661 [TBL] [Abstract][Full Text] [Related]
20. Which bidomain conductivity is the most important for modelling heart and torso surface potentials during ischaemia? Johnston BM; Johnston PR Comput Biol Med; 2021 Oct; 137():104830. PubMed ID: 34534792 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]