These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 22699149)

  • 21. Sensitive response to low-frequency cochlear distortion products in the auditory midbrain.
    Abel C; Kössl M
    J Neurophysiol; 2009 Mar; 101(3):1560-74. PubMed ID: 19036870
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modulation of auditory percepts by transcutaneous electrical stimulation.
    Ueberfuhr MA; Braun A; Wiegrebe L; Grothe B; Drexl M
    Hear Res; 2017 Jul; 350():235-243. PubMed ID: 28323018
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Contralateral suppression of latency during distortion product otoacoustic emissions detection in guinea pigs].
    Kong W; Yang Y; Zhang W
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 2001 Aug; 36(4):271-4. PubMed ID: 12761994
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Distortion-product otoacoustic emissions and cochlear microphonics: relationships in patients with and without endolymphatic hydrops.
    Fetterman BL
    Laryngoscope; 2001 Jun; 111(6):946-54. PubMed ID: 11404602
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Use of acoustic distortion products in clinical diagnosis. The site of origin of otoacoustic emissions in the inner ear].
    Plinkert PK; Harris FP; Probst R
    HNO; 1993 Jul; 41(7):339-44. PubMed ID: 8376180
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Long-term stability between click-evoked otoacoustic emissions and distortion product otoacoustic emissions in guinea pigs: A comparison.
    Hoshino M; Ueda H; Nakata S
    ORL J Otorhinolaryngol Relat Spec; 1999; 61(4):175-80. PubMed ID: 10450050
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Distortion product otoacoustic emissions and basilar membrane vibration in the 6-9 kHz region of sensitive chinchilla cochleae.
    Rhode WS
    J Acoust Soc Am; 2007 Nov; 122(5):2725-37. PubMed ID: 18189565
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cochlear nonlinearity in normal-hearing subjects as inferred psychophysically and from distortion-product otoacoustic emissions.
    Johannesen PT; Lopez-Poveda EA
    J Acoust Soc Am; 2008 Oct; 124(4):2149-63. PubMed ID: 19062855
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Detection of hearing loss using 2f2-f1 and 2f1-f2 distortion-product otoacoustic emissions.
    Fitzgerald TS; Prieve BA
    J Speech Lang Hear Res; 2005 Oct; 48(5):1165-86. PubMed ID: 16411804
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of aspirin on phase gradient of 2F1-F2 distortion product otoacoustic emissions.
    Parazzini M; Hall AJ; Lutman ME; Kapadia S
    Hear Res; 2005 Jul; 205(1-2):44-52. PubMed ID: 15953514
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanism for bandpass frequency characteristic in distortion product otoacoustic emission generation.
    Fahey PF; Stagner BB; Martin GK
    J Acoust Soc Am; 2006 Feb; 119(2):991-6. PubMed ID: 16521760
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Between-subject variability and within-subject reliability of the human eye-movement response to bilateral galvanic (DC) vestibular stimulation.
    MacDougall HG; Brizuela AE; Burgess AM; Curthoys IS
    Exp Brain Res; 2002 May; 144(1):69-78. PubMed ID: 11976760
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DPOAE group delays versus electrophysiological measures of cochlear delay in normal human ears.
    Schoonhoven R; Prijs VF; Schneider S
    J Acoust Soc Am; 2001 Apr; 109(4):1503-12. PubMed ID: 11325122
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Galvanic vestibular stimulation improves the results of vestibular rehabilitation.
    Carmona S; Ferrero A; Pianetti G; Escolá N; Arteaga MV; Frankel L
    Ann N Y Acad Sci; 2011 Sep; 1233():E1-7. PubMed ID: 22360772
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of the intensity of galvanic vestibular stimulation and cutaneous stimulation on the soleus H-reflex in healthy individuals.
    Okada Y; Shiozaki T; Nakamura J; Azumi Y; Inazato M; Ono M; Kondo H; Sugitani M; Matsugi A
    Neuroreport; 2018 Sep; 29(13):1135-1139. PubMed ID: 29965870
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spectral fine-structures of low-frequency modulated distortion product otoacoustic emissions.
    Bian L
    J Acoust Soc Am; 2006 Jun; 119(6):3872-85. PubMed ID: 16838531
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Distortion-product source unmixing: a test of the two-mechanism model for DPOAE generation.
    Kalluri R; Shera CA
    J Acoust Soc Am; 2001 Feb; 109(2):622-37. PubMed ID: 11248969
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Subsensory galvanic vestibular stimulation augments arterial pressure control upon head-up tilt in human subjects.
    Tanaka K; Abe C; Sakaida Y; Aoki M; Iwata C; Morita H
    Auton Neurosci; 2012 Jan; 166(1-2):66-71. PubMed ID: 22088942
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Frequency-change in DPOAE evoked by 1 s/octave sweeping primaries in newborns and adults.
    AlMakadma HA; Henin S; Prieve BA; Dyab WM; Long GR
    Hear Res; 2015 Oct; 328():157-65. PubMed ID: 26318364
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Amplitude of distortion product otoacoustic emissions in the guinea pig in f(1)- and f(2)-sweep paradigms.
    Schneider S; Schoonhoven R; Prijs VF
    Hear Res; 2001 May; 155(1-2):21-31. PubMed ID: 11335073
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.