These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 22699261)

  • 1. Evolution of graphene nanoribbons under low-voltage electron irradiation.
    Zhu W; Wang H; Yang W
    Nanoscale; 2012 Aug; 4(15):4555-61. PubMed ID: 22699261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene nanoribbons from unzipped carbon nanotubes: atomic structures, Raman spectroscopy, and electrical properties.
    Xie L; Wang H; Jin C; Wang X; Jiao L; Suenaga K; Dai H
    J Am Chem Soc; 2011 Jul; 133(27):10394-7. PubMed ID: 21678963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From zigzag to armchair: the energetic stability, electronic and magnetic properties of chiral graphene nanoribbons with hydrogen-terminated edges.
    Sun L; Wei P; Wei J; Sanvito S; Hou S
    J Phys Condens Matter; 2011 Oct; 23(42):425301. PubMed ID: 21969127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A guide to the design of electronic properties of graphene nanoribbons.
    Yazyev OV
    Acc Chem Res; 2013 Oct; 46(10):2319-28. PubMed ID: 23282074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of thermal and electronic transport in defect-engineered graphene nanoribbons.
    Haskins J; Kınacı A; Sevik C; Sevinçli H; Cuniberti G; Cağın T
    ACS Nano; 2011 May; 5(5):3779-87. PubMed ID: 21452884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size, structure, and helical twist of graphene nanoribbons controlled by confinement in carbon nanotubes.
    Chamberlain TW; Biskupek J; Rance GA; Chuvilin A; Alexander TJ; Bichoutskaia E; Kaiser U; Khlobystov AN
    ACS Nano; 2012 May; 6(5):3943-53. PubMed ID: 22483078
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemically derived, ultrasmooth graphene nanoribbon semiconductors.
    Li X; Wang X; Zhang L; Lee S; Dai H
    Science; 2008 Feb; 319(5867):1229-32. PubMed ID: 18218865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bandgap engineering of zigzag graphene nanoribbons by manipulating edge states via defective boundaries.
    Zhang A; Wu Y; Ke SH; Feng YP; Zhang C
    Nanotechnology; 2011 Oct; 22(43):435702. PubMed ID: 21967829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linear indium atom chains at graphene edges.
    Elibol K; Susi T; Mangler C; Eder D; Meyer JC; Kotakoski J; Hobbs RG; van Aken PA; Bayer BC
    NPJ 2D Mater Appl; 2023; 7(1):2. PubMed ID: 38665487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication and In Situ Transmission Electron Microscope Characterization of Free-Standing Graphene Nanoribbon Devices.
    Wang Q; Kitaura R; Suzuki S; Miyauchi Y; Matsuda K; Yamamoto Y; Arai S; Shinohara H
    ACS Nano; 2016 Jan; 10(1):1475-80. PubMed ID: 26731015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Triggering One-Dimensional Phase Transition with Defects at the Graphene Zigzag Edge.
    Deng Q; Zhao J
    Nano Lett; 2016 Feb; 16(2):1244-9. PubMed ID: 26783941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetotransport Properties of Graphene Nanoribbons with Zigzag Edges.
    Wu S; Liu B; Shen C; Li S; Huang X; Lu X; Chen P; Wang G; Wang D; Liao M; Zhang J; Zhang T; Wang S; Yang W; Yang R; Shi D; Watanabe K; Taniguchi T; Yao Y; Wang W; Zhang G
    Phys Rev Lett; 2018 May; 120(21):216601. PubMed ID: 29883135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic transport of recrystallized freestanding graphene nanoribbons.
    Qi ZJ; Daniels C; Hong SJ; Park YW; Meunier V; Drndić M; Johnson AT
    ACS Nano; 2015; 9(4):3510-20. PubMed ID: 25738404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective etching of graphene edges by hydrogen plasma.
    Xie L; Jiao L; Dai H
    J Am Chem Soc; 2010 Oct; 132(42):14751-3. PubMed ID: 20923144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emergent properties and trends of a new class of carbon nanocomposites: graphene nanoribbons encapsulated in a carbon nanotube.
    Kou L; Tang C; Wehling T; Frauenheim T; Chen C
    Nanoscale; 2013 Apr; 5(8):3306-14. PubMed ID: 23463363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons.
    Jia X; Hofmann M; Meunier V; Sumpter BG; Campos-Delgado J; Romo-Herrera JM; Son H; Hsieh YP; Reina A; Kong J; Terrones M; Dresselhaus MS
    Science; 2009 Mar; 323(5922):1701-5. PubMed ID: 19325109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dimensional crossover of thermal conductance in graphene nanoribbons: a first-principles approach.
    Wang J; Wang XM; Chen YF; Wang JS
    J Phys Condens Matter; 2012 Jul; 24(29):295403. PubMed ID: 22739359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic and magnetic properties and structural stability of BeO sheet and nanoribbons.
    Wu W; Lu P; Zhang Z; Guo W
    ACS Appl Mater Interfaces; 2011 Dec; 3(12):4787-95. PubMed ID: 22039765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Examining co-based nanocrystals on graphene using low-voltage aberration-corrected transmission electron microscopy.
    Warner JH; Rümmeli MH; Bachmatiuk A; Wilson M; Büchner B
    ACS Nano; 2010 Jan; 4(1):470-6. PubMed ID: 20020749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.