These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 22699306)

  • 1. Characterization of microbial metabolism of Syrah grape products in an in vitro colon model using targeted and non-targeted analytical approaches.
    Aura AM; Mattila I; Hyötyläinen T; Gopalacharyulu P; Cheynier V; Souquet JM; Bes M; Le Bourvellec C; Guyot S; Orešič M
    Eur J Nutr; 2013 Mar; 52(2):833-46. PubMed ID: 22699306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gut microbial metabolism of polyphenols from black tea and red wine/grape juice is source-specific and colon-region dependent.
    van Dorsten FA; Peters S; Gross G; Gomez-Roldan V; Klinkenberg M; de Vos RC; Vaughan EE; van Duynhoven JP; Possemiers S; van de Wiele T; Jacobs DM
    J Agric Food Chem; 2012 Nov; 60(45):11331-42. PubMed ID: 23072624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeted analysis of microbial-generated phenolic acid metabolites derived from grape flavanols by gas chromatography-triple quadrupole mass spectrometry.
    Carry E; Zhao D; Mogno I; Faith J; Ho L; Villani T; Patel H; Pasinetti GM; Simon JE; Wu Q
    J Pharm Biomed Anal; 2018 Sep; 159():374-383. PubMed ID: 30032004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Volatile profile and aroma potential of tropical Syrah wines elaborated in different maturation and maceration times using comprehensive two-dimensional gas chromatography and olfactometry.
    Aith Barbará J; Primieri Nicolli K; Souza-Silva ÉA; Camarão Telles Biasoto A; Welke JE; Alcaraz Zini C
    Food Chem; 2020 Mar; 308():125552. PubMed ID: 31677598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-fermentation of red grapes and white pomace: A natural and economical process to modulate hybrid wine composition.
    Nicolle P; Marcotte C; Angers P; Pedneault K
    Food Chem; 2018 Mar; 242():481-490. PubMed ID: 29037718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Survey of polyphenol constituents in grapes and grape-derived products.
    Xu Y; Simon JE; Welch C; Wightman JD; Ferruzzi MG; Ho L; Pasinetti GM; Wu Q
    J Agric Food Chem; 2011 Oct; 59(19):10586-93. PubMed ID: 21879745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of two different treatments for reducing grape yield in Vitis vinifera cv Syrah on wine composition and quality: berry thinning versus cluster thinning.
    Gil M; Esteruelas M; González E; Kontoudakis N; Jiménez J; Fort F; Canals JM; Hermosín-Gutiérrez I; Zamora F
    J Agric Food Chem; 2013 May; 61(20):4968-78. PubMed ID: 23627566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grape and wine polymeric polyphenols: Their importance in enology.
    Li L; Sun B
    Crit Rev Food Sci Nutr; 2019; 59(4):563-579. PubMed ID: 28933917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenolic compounds extraction in enzymatic macerations of grape skins identified as low-level extractable total anthocyanin content.
    Nogales-Bueno J; Baca-Bocanegra B; Heredia FJ; Hernández-Hierro JM
    J Food Sci; 2020 Feb; 85(2):324-331. PubMed ID: 31968392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors affecting the conversion of apple polyphenols to phenolic acids and fruit matrix to short-chain fatty acids by human faecal microbiota in vitro.
    Bazzocco S; Mattila I; Guyot S; Renard CM; Aura AM
    Eur J Nutr; 2008 Dec; 47(8):442-52. PubMed ID: 18931964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of wine color attributes from the phenolic profiles of red grapes (Vitis vinifera).
    Jensen JS; Demiray S; Egebo M; Meyer AS
    J Agric Food Chem; 2008 Feb; 56(3):1105-15. PubMed ID: 18173238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disease Resistant Bouquet Vine Varieties: Assessment of the Phenolic, Aromatic, and Sensory Potential of Their Wines.
    González-Centeno MR; Chira K; Miramont C; Escudier JL; Samson A; Salmon JM; Ojeda H; Teissedre PL
    Biomolecules; 2019 Nov; 9(12):. PubMed ID: 31783641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility and application of liquid-liquid extraction combined with gas chromatography-mass spectrometry for the analysis of phenolic acids from grape polyphenols degraded by human faecal microbiota.
    Muñoz-González C; Moreno-Arribas MV; Rodríguez-Bencomo JJ; Cueva C; Martín Álvarez PJ; Bartolomé B; Pozo-Bayón MA
    Food Chem; 2012 Jul; 133(2):526-35. PubMed ID: 25683429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenolic composition and antioxidant capacity of pomaces from four grape varieties (Vitis vinifera L.).
    de la Cerda-Carrasco A; López-Solís R; Nuñez-Kalasic H; Peña-Neira Á; Obreque-Slier E
    J Sci Food Agric; 2015 May; 95(7):1521-7. PubMed ID: 25082193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The metabolic fate of red wine and grape juice polyphenols in humans assessed by metabolomics.
    van Dorsten FA; Grün CH; van Velzen EJ; Jacobs DM; Draijer R; van Duynhoven JP
    Mol Nutr Food Res; 2010 Jul; 54(7):897-908. PubMed ID: 20013882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First chemical and sensory characterization of Moribel and Tinto Fragoso wines using HPLC-DAD-ESI-MS/MS, GC-MS, and Napping® techniques: comparison with Tempranillo.
    Pérez-Navarro J; Izquierdo-Cañas PM; Mena-Morales A; Martínez-Gascueña J; Chacón-Vozmediano JL; García-Romero E; Gómez-Alonso S; Hermosín-Gutiérrez I
    J Sci Food Agric; 2019 Mar; 99(5):2108-2123. PubMed ID: 30298616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of grape and red wine polyphenols on gut microbiota - A systematic review.
    Nash V; Ranadheera CS; Georgousopoulou EN; Mellor DD; Panagiotakos DB; McKune AJ; Kellett J; Naumovski N
    Food Res Int; 2018 Nov; 113():277-287. PubMed ID: 30195522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioaccessibility of polyphenols and antioxidant properties of the white grape by simulated digestion and Caco-2 cell assays: Comparative study with its winemaking product.
    Lingua MS; Theumer MG; Kruzynski P; Wunderlin DA; Baroni MV
    Food Res Int; 2019 Aug; 122():496-505. PubMed ID: 31229105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical characteristics of grapes cv. Syrah (Vitis vinifera L.) grown in the tropical semiarid region of Brazil (Pernambuco state): influence of rootstock and harvest season.
    de Oliveira JB; Egipto R; Laureano O; de Castro R; Pereira GE; Ricardo-da-Silva JM
    J Sci Food Agric; 2019 Aug; 99(11):5050-5063. PubMed ID: 30980407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of fortified, sfursat, and passito wines produced from fresh and dehydrated grapes of aromatic black cv. Moscato nero (Vitis vinifera L.).
    Ossola C; Giacosa S; Torchio F; Río Segade S; Caudana A; Cagnasso E; Gerbi V; Rolle L
    Food Res Int; 2017 Aug; 98():59-67. PubMed ID: 28610733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.